
PCI-to-PCI Bridge Architecture
Specification

Revision 1.1

December 18, 1998

Revision 1.1

22

Revision History

Revision Issue Date Comments

1.0 4/5/94 Original issue

1.1 12/18/98 Update to include target initial latency requirements.

The PCI Special Interest Group disclaims all warranties and liability for the use of this document and the
information contained herein and assumes no responsibility for any errors that may appear in this document,
nor does the PCI Special Interest Group make a commitment to update the information contained herein.

Contact the PCI Special Interest Group office to obtain the latest revision of the specification.

Questions regarding the PCI specification or membership in the PCI Special Interest Group may be
forwarded to:

PCI Special Interest Group
2575 N.E. Kathryn #17
Hillsboro, Oregon 97124
1-800-433-5177 (USA)
503-693-6232 (International)
503-693-8344 (Fax)
pcisig@pcisig.com
http://www.pcisig.com

DISCLAIMER

This PCI-to-PCI Bridge Architecture Specification is provided "as is" with no warranties
whatsoever, including any warranty of merchantability, noninfringement, fitness for any
particular purpose, or any warranty otherwise arising out of any proposal, specification, or
sample. The PCI SIG disclaims all liability for infringement of proprietary rights, relating to use
of information in this specification. No license, express or implied, by estoppel or otherwise, to
any intellectual property rights is granted herein.

Intel and Pentium are registered trademarks of Intel Corporation.

All other product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Copyright © 1994, 1998, PCI Special Interest Group

All rights reserved.

Revision 1.1

3

CONTENTS
&+$37(5����,1752'8&7,21

1.1. Goals and Non-Goals of this Specification ...11

1.2. Overview and Terminology ...11

&+$37(5����%5,'*(�5(48,5(0(176

2.1. Summary of Key Requirements..15

2.2. Capabilities Not Supported ...16

2.3. Optional Capabilities ...17

&+$37(5����&21),*85$7,21

3.1. Overview of Hierarchical Configuration..19
3.1.1. Type 0 Configuration Transaction Support...20
3.1.2. Type 1 Configuration Transaction Support...20

3.1.2.1. Primary Interface...20
3.1.2.1.1. Type 1 to Type 0 Conversion...21
3.1.2.1.2. Type 1 to Type 1 Forwarding...23
3.1.2.1.3. Type 1 to Special Cycle Conversion ..23

3.1.2.2. Secondary Interface ...23
3.1.2.2.1. Type 1 to Type 1 Forwarding...24
3.1.2.2.2. Type 1 to Special Cycle Conversion ..24

3.2. PCI-to-PCI Bridge Configuration Space Header Format ..25
3.2.1. Access of Reserved Registers ...26
3.2.2. Access of Reserved Bit Fields ..26
3.2.3. Reset Events26
3.2.4. Common Format Configuration Registers ..26

3.2.4.1. Vendor ID Register..26
3.2.4.2. Device ID Register ..26
3.2.4.3. Command Register ..27
3.2.4.4. Status Register...31
3.2.4.5. Revision ID Register ...34
3.2.4.6. Class Code Register...34
3.2.4.7. Cacheline Size Register ...35
3.2.4.8. Latency Timer Register ...36
3.2.4.9. Header Type Register ..36
3.2.4.10. BIST Register ..36

3.2.5. Bridge Specific Configuration Registers...37
3.2.5.1. Base Address Registers ...37

Revision 1.1

4

3.2.5.1.1. Memory Base Address Register Format...38
3.2.5.1.2. I/O Base Address Register Format...39

3.2.5.2. Primary Bus Number Register...40
3.2.5.3. Secondary Bus Number Register...40
3.2.5.4. Subordinate Bus Number Register ..40
3.2.5.5. Secondary Latency Timer Register ...40
3.2.5.6. I/O Base Register and I/O Limit Register..41
3.2.5.7. Secondary Status Register ...42
3.2.5.8. Memory Base Register and Memory Limit Register ...45
3.2.5.9. Prefetchable Memory Base Register and Prefetchable Memory Limit Register46
3.2.5.10. Prefetchable Base Upper 32 Bits and Prefetchable Limit Upper 32 Bits Registers46
3.2.5.11. I/O Base Upper 16 Bits and I/O Limit Upper 16 Bits Registers ..47
3.2.5.12. Capabilities Pointer..47
3.2.5.13. Reserved Registers at 35h, 36h, and 37h ...47
3.2.5.14. Expansion ROM Base Address Register ...48
3.2.5.15. Interrupt Line Register...48
3.2.5.16. Interrupt Pin Register...48
3.2.5.17. Bridge Control Register...49

3.2.6. Slot Numbering Capabilities List Item ...55
3.2.6.1. Slot Numbering Capabilities ID ..55
3.2.6.2. Pointer to Next ID ...55
3.2.6.3. Expansion Slot Register...55
3.2.6.4. Chassis Number Register...56

&+$37(5����$''5(66�'(&2',1*

4.1. Address Ranges ..57

4.2. I/O..57
4.2.1. ISA Mode ...59

4.3. Memory Mapped I/O ...60

4.4. Prefetchable Memory...62
4.4.1. 64-bit Addressing..63
4.4.2. 64-bit Address Decoding of Prefetchable Memory...65

4.4.2.1. Below the 4 GB Boundary...66
4.4.2.2. Above the 4 GB Boundary ..66
4.4.2.3. Across the 4 GB Boundary..66

4.5. VGA Support..67
4.5.1. VGA Compatible Addressing ...67
4.5.2. VGA Palette Snooping..67

4.6. Subtractive Decode Support..68

&+$37(5����%8))(5�0$1$*(0(17

5.1. Prefetching Read Data...69

5.2. Posting Write Data...71

Revision 1.1

5

5.2.1. Memory Write and Invalidate Usage ..71
5.2.1.1. Forwarding Memory Write and Invalidate Transactions ..71
5.2.1.2. Promoting Memory Write Transactions ..72
5.2.1.3. Combining Memory Write Transactions ...72
5.2.1.4. Memory Write and Invalidate Disconnects ..73

5.2.1.4.1. Master Disconnected by the Bridge ...73
5.2.1.4.2. Bridge Disconnected by the Target ..73

5.3. Delayed Transactions...74
5.3.1. Discarding a Delayed Request ...75
5.3.2. Discarding a Delayed Completion ...76

5.4. Exclusive Access Transactions ..76
5.4.1. Delayed Lock-Request Error ..77
5.4.2. Normal Completion ..77

5.5. Ordering Requirements...78

5.6. Special Design Considerations ..88
5.6.1. Read Starvation...88
5.6.2. Stale Data... ...89
5.6.3. Deadlocks89

5.7. Combining Separate Writes Into a Single Burst Transaction..91

5.8. Merging Separate Writes Into a Single Transaction...91

5.9. Collapsing of Writes...91

&+$37(5����(5525�6833257

6.1. Introduction..93

6.2. Parity Errors ..95
6.2.1. Address Parity Errors..95
6.2.2. Read Data Parity Errors ..96

6.2.2.1. Target Completion Error ...96
6.2.2.2. Master Completion Error...97

6.2.3. Non-Posted Write Data Parity Errors..97
6.2.3.1. Master Request Error...98
6.2.3.2. Target Completion Error ...98
6.2.3.3. Master Completion Error...99

6.2.4. Posted Write Data Parity Errors..100
6.2.4.1. Originating Bus Error ..100
6.2.4.2. Destination Bus Error ..101

6.3. Master-Aborts ..101
6.3.1. Non-posted Transactions ..101
6.3.2. Posted Write Transactions ..102
6.3.3. Exclusive Access Master-Abort..103

Revision 1.1

6

6.4. Target-Aborts ...103
6.4.1. Internal Errors...103
6.4.2. Non-Posted Write Transactions ..103
6.4.3. Posted Write Transactions ..104

6.5. Discard Timer Timeout Errors ...104

6.6. Secondary Interface SERR# Assertions ...105

&+$37(5����3&,�%86�&200$1'6

7.1. Summary of Bridge Transaction Command Support...107

&+$37(5����$5%,75$7,21�$1'�/$7(1&<�5(48,5(0(176

8.1. Bridge Interface Priority ...109

8.2. Secondary Interface Arbitration Requirements ..109

8.3. Bus Parking110

8.4. Latency Requirements ...110

&+$37(5����,17(55837�6833257

9.1. Interrupt Routing..113

&+$37(5�����6,*1$/�3,16

10.1. Primary PCI Interface...115
10.1.1. Required Signals...115
10.1.2. Optional Signals..115

10.2. Secondary PCI Interface ...116
10.2.1. Buffered Clocks ..116
10.2.2. Required Signals...117
10.2.3. Optional Signals..117

&+$37(5�����,1,7,$/,=$7,21�5(48,5(0(176

11.1. Reset Behavior..119
11.1.1. Secondary Reset Signal...119
11.1.2. Bus Parking During Reset...119

11.2. System Initialization...120
11.2.1. Assigning Bus Numbers..120
11.2.2. Allocating Address Spaces..120
11.2.3. Writing IRQ Numbers into Interrupt Line Register(s) ..122

Revision 1.1

7

11.3. PCI Display Subsystem Initialization ..123
11.3.1. Initial Conditions ...123
11.3.2. Initialization Algorithm ..123
11.3.3. Algorithm Pseudo-code ..124

&+$37(5�����9*$�6833257

12.1. VGA Support..125
12.1.1. VGA Compatible Addressing ...125
12.1.2. VGA Snooping ...126

12.1.2.1. VGA-compatible Graphics Devices ..126
12.1.2.2. Non-VGA-compatible Graphics Devices ..127
12.1.2.3. PCI-to-PCI Bridges ...127
12.1.2.4. Subtractive Decoding Bridges ...128

12.2. VGA Configuration Restrictions ..128

12.3. VGA Palette Snooping Configuration Examples...129
12.3.1. VGA and GFX on PCI Bus 0..129
12.3.2. GFX Downstream of Subtractive Bridge..130
12.3.3. VGA Downstream of Subtractive Bridge ...130
12.3.4. GFX Downstream of Positive Bridge ...131
12.3.5. VGA Downstream of Positive Bridge...131
12.3.6. VGA and GFX Downstream of Subtractive Bridge..132
12.3.7. VGA and GFX Downstream of Positive Bridge...132
12.3.8. GFX Downstream of VGA on Same Path ..133
12.3.9. VGA Downstream of GFX on Same Path ..133
12.3.10. GFX Far Downstream of VGA on Same Path ..134
12.3.11. VGA Far Downstream of GFX on Same Path ..134
12.3.12. Illegal - Write Never Gets to GFX..135
12.3.13. Illegal - Write Never Gets to VGA ...135
12.3.14. Illegal - Two Devices Respond to Writes ...136

&+$37(5�����6/27�180%(5,1*

13.1. Introduction..137

13.2. Device Number and Slot Number Assignment Rules ..138

13.3. The Slot Number Register ...140

13.4. The Chassis Number Register ...140

13.5. A Slot Numbering Example...141

13.6. Run-Time Algorithm for Determining Chassis and Slot Number.. 145

Revision 1.1

8

Revision 1.1

9

Preface

Scope
This specification defines the behavior of a compliant PCI-to-PCI bridge. A PCI-to-PCI bridge
that conforms to this specification and the PCI Local Bus Specification is a compliant
implementation. Compliant bridges may differ from each other in performance and to some
extent functionality.

Related Documents
This specification assumes that the reader has a working knowledge of the PCI Local Bus
Specification and is familiar with other PCI specifications. Refer to the PCI SIG web page for
the latest list of specifications and revision levels.

Following publication of the PCI-to-PCI Bridge Architecture Specification, there may be future
approved errata and/or approved changes to the specification prior to the issuance of another
formal revision. To assure designs meet the latest level requirements, designers of PCI-to-PCI
bridges must refer to the PCI SIG home page at http://www.pcisig.com, in the members-only
section, for any approved changes.

Revision 1.1

10

Revision 1.1

11

Chapter 1
Introduction

1.1. Goals and Non-Goals of this Specification

This specification establishes the requirements that a PCI-to-PCI bridge must meet to be
compliant to this specification and the PCI Local Bus Specification. In addition, the
requirements for optional extensions are specified. This specification does not describe the
implementation details of any particular requirement or optional feature of a PCI-to-PCI bridge,
nor is it a goal of this specification to describe any particular PCI-to-PCI bridge implementation.
However, some recommendations are provided for some implementation-specific features that
can be provided by a PCI-to-PCI bridge.

1.2. Overview and Terminology

A PCI-to-PCI bridge provides a connection path between two independent PCI buses. The
primary function of the bridge is to allow transactions to occur between a master on one PCI bus
and a target on the other PCI bus. PCI-to-PCI bridges provide system and expansion board
designers the ability to overcome electrical loading limits by creating hierarchical PCI buses. To
aid in the discussion of PCI-to-PCI bridge architecture, the following terminology is used in this
document:

bridge - In this document, the word bridge when used by itself is equivalent to the term PCI-to-
PCI bridge. Other types of bridges such as expansion bus bridges or host bus bridges are always
explicitly named.

downstream - Transactions that are forwarded from the primary interface to secondary interface
of a bridge are said to be flowing downstream.

originating bus - The master of a transaction that crosses a bridge is said to reside on the
originating bus.

primary interface - The PCI interface of the bridge that is connected to the PCI bus closest to the
CPU is referred to as the primary PCI interface.

secondary interface - The PCI interface of the bridge that is connected to the PCI bus farthest
from the CPU is referred to as the secondary PCI interface.

Revision 1.1

12

destination bus - The target of a transaction that crosses a bridge is said to reside on the
destination bus.

upstream - Transactions that are forwarded from the secondary interface to primary interface of a
bridge are said to be flowing upstream.

Thus, a bridge has two PCI interfaces, the primary and secondary. Each interface is capable of
both master and target operation. The bridge functions as a target on the originating bus on
behalf of the target that actually resides on the destination bus. Likewise, the bridge functions as
a master on the destination bus on behalf of the originating master that actually resides on the
originating bus.

Figure 1-1 illustrates two typical applications for a bridge. The first application is the use of a
bridge to create a second PCI bus segment to which additional PCI connectors are added. This
bus segment is labeled in the figure as PCI Bus 1. In this example, the primary interface of
bridge 1 is connected to PCI bus 0 while its secondary interface is connected to PCI bus 1. The
second application example is the use of a bridge to create a PCI bus segment on an expansion
board that allows multiple PCI devices to reside on a single expansion board. In this example,
the primary interface of bridge 2 is connected to PCI bus 1 and its secondary interface is
connected to PCI bus 2. Note that the number assigned to the bridge corresponds to the number
of the bus segment spawned by the bridge. In this example, the host bridge is considered to be
bridge number 0 and spawns PCI bus segment 0.

&38

+RVW

%ULGJH

0HPRU\

+RVW

%XV

3&,

'HYLFH

3&,�3&,

%ULGJH��

3&,�3&,

%ULGJH��

3&,

'HYLFH

3&,

'HYLFH

3&,�%XV��

3&,�([SDQVLRQ�%RDUG

3&,�([SDQVLRQ�6ORWV

3&,�([SDQVLRQ�%RDUG

3&,

%XV��

3&,

%XV��

Figure 1-1: Typical Bridge Applications

Revision 1.1

13

A bridge allows transactions between a master on one PCI interface and a target on the other
interface as illustrated in Figure 1-2. The target interface on one bus is connected to the master
interface on the other bus. The blocks between the data path of the primary and secondary
interfaces provide any necessary transaction address and data buffering. The target block
connected to the primary PCI interface must support PCI configuration space. The bridge
basically consists of four state machinestwo masters and two targets. Each of the master and
target interface state machines must adhere to the requirements of the PCI Local Bus
Specification.

3ULPDU\
7DUJHW
,QWHUIDFH

7UDQVDFWLRQ�'DWD�
%XIIHUV

&RQILJXUDWLRQ
5HJLVWHUV

7UDQVDFWLRQ�'DWD
%XIIHUV

3ULPDU\
0DVWHU
,QWHUIDFH

6HFRQGDU\
0DVWHU
,QWHUIDFH

6HFRQGDU\
7DUJHW
,QWHUIDFH

'DWD�3DWK

'DWD�3DWK

&RQWURO &RQWURO

6HFRQGDU\
,QWHUIDFH

3ULPDU\
,QWHUIDFH

Figure 1-2: Example Bridge Block Diagram

Revision 1.1

14

Revision 1.1

15

Chapter 2
Bridge Requirements

2.1. Summary of Key Requirements

A summary of key bridge requirements are listed below:

• A bridge must be compliant with the current PCI Local Bus Specification. This includes the
following requirements:

 The bridge must adhere to the electrical loading limits for all PCI signals. When a
bridge is used on the expansion board, the bridge is limited to a single connection per
PCI signal (for example, CLK). As a result, when the secondary PCI bus runs
synchronously to the primary PCI bus, the bridge must buffer the CLK signal received
from the expansion board connector for distribution to other PCI devices connected to
the secondary bus. See Section 10.2.1. for additional clock buffering considerations.

 A bridge must support the range of operation from DC to 33 MHz. A bridge may
optionally support 66 MHz operation as defined by the PCI Local Bus Specification.
The relationship between the primary interface and secondary interface clocks of a
bridge is implementation specific.

 The PCI connector does not support side-band signals. Therefore, a bridge cannot
require any side-band signals for correct operation when used in expansion board
applications. A bridge must maintain transaction ordering as described in Appendix E of
the PCI Local Bus Specification when transactions cross the bridge in either direction.

 A bridge must adhere to the 16-clock target initial latency and 8-clock target subsequent
latency rules for all transactions, including those that are forwarded across the bridge as
well as those that access registers internal to the bridge. The PCI Local Bus
Specification grants exceptions to the target initial latency during initialization time.

• A bridge must comply with the requirements set forth in the remainder of this document.
This includes the required capabilities listed below:

 Configuration register space adhering to the PCI-to-PCI bridge Type 1 Header format

 Hierarchical configuration transaction support

 Memory mapped I/O address space for transaction forwarding

Revision 1.1

16

− Posting of memory write transactions

− Support of Delayed Transactions (for non-posted transactions)

− Support the forwarding of DAC upstream

• If a bridge provides the arbiter for the secondary bus, it must be designed to prevent
deadlocks. The bridge is required to implement a fairness algorithm to avoid potential
deadlocks. Refer to Section 8.2. for more details.

 2.2. Capabilities Not Supported

 Listed below are capabilities that are precluded by this specification. There may be other
capabilities precluded by this specification that do not appear on the list below.

• Support for unusual configurations (some examples are listed below).

 Using two bridges to connect to a common secondary bus and different primary buses

 Multiple bridges connecting to same primary bus and same secondary bus

 Two bridges where the primary interface of one bridge is connected to the secondary
interface of the other and vice versa

• Forwarding of Special Cycle transactions. Special Cycle transactions are only supported
through Configuration Type 1 transactions.

• Forwarding of Interrupt Acknowledge transactions.

 Listed below are capabilities that are not controlled by this specification. It may be possible for a
bridge to provide support for these (and other) capabilities, but this specification does not
attempt to make provisions for their support.

• Support of downstream devices that require mapping to the first 1 MB of memory space.

• Support of downstream bridges to non-PCI buses.

• ISA compatibility addressing for devices other than VGA.

• Access by ISA masters or ISA DMA of devices located on hierarchical PCI buses. It is
assumed that ISA masters or ISA DMA access system memory only.

• Primary boot ROM on secondary interface. The bridge must be configured before access of
downstream devices can occur.

Revision 1.1

17

 2.3. Optional Capabilities

 Listed below are capabilities that a bridge is not required to support but for which provisions
have been made by this specification. These may be optionally supported by a bridge provided
they adhere to the requirements and guidelines established in this specification and the PCI
Local Bus Specification.

• Support for optional address ranges:

 I/O address range

 Prefetchable memory address range

• VGA support:

 VGA addressing

 VGA palette snooping

• JTAG

• 64-bit addressing on the primary interface

• 64-bit data path

• Arbitration support for secondary bus devices

• Expansion ROM

• Subtractive decoding

Revision 1.1

18

Revision 1.1

19

�

 Chapter 3
Configuration

 3.1. Overview of Hierarchical Configuration

 The PCI Local Bus Specification defines two configuration transaction types, Type 0 and Type 1,
which are illustrated in Figure 3-1. The two configuration address formats are distinguished by
the value of address bits AD[1::0]. A Type 0 configuration transaction is used to access a device
on the current bus segment and a Type 1 configuration transaction is used to access a device that
resides behind a bridge.

��
)XQFWLRQ
1XPEHU

5HVHUYHG

����
5HJLVWHU
1XPEHU

�������

��
)XQFWLRQ
1XPEHU

'HYLFH
1XPEHU

����
5HJLVWHU
1XPEHU

�������

7\SH��

��

%XV�1XPEHU

�� ��

5HVHUYHG

��

7\SH��

 Figure 3-1: Configuration Type 0 and Type 1 Address Format

 If address bits AD[1::0] are 00b during a configuration transaction, then a Type 0 configuration
transaction is being used. A Type 0 configuration transaction is not forwarded across a bridge
but is used to configure a bridge or other PCI devices that are connected to the PCI bus on which
the Type 0 configuration transaction is generated.

 If address bits AD[1::0] are 01b during a configuration transaction, then a Type 1 configuration
transaction is being used. A Type 1 configuration transaction is used to address a device that
does not reside on the current bus segment and may be forwarded to another bus segment by a
bridge.

 The following sections describe the support provided by bridges for Type 0 and Type 1
configuration transactions.

Revision 1.1

20

 3.1.1. Type 0 Configuration Transaction Support

 A bridge only responds to Type 0 configuration transactions on its primary PCI interface when
being configured. A bridge ignores Type 0 configuration transactions that originate on the
secondary interface of the bridge. Thus, the bridge does not implement IDSEL on its secondary
interface. A Type 0 configuration transaction is used to configure the bridge and is not
forwarded downstream by the bridge (from its primary to secondary interface).

 PCI devices, including bridges, are selected by a PCI configuration transaction when the
following conditions are all true:

• IDSEL is asserted;

• The PCI bus command is a Configuration Read or Configuration Write;

• Address bits AD[1::0] are 00 (during the address phase of the transaction); and

• If a multifunction device, address bits AD[10:08] select an implemented function.

 During a configuration transaction, address bits AD[7::2] select a DWORD (longword) register
in the device’s 256-byte configuration address space. Address bits AD[31::11] are ignored by
devices during configuration transactions.

 3.1.2. Type 1 Configuration Transaction Support

 During a Type 1 configuration transaction, address bits AD[23::16] specify a unique PCI bus in
the PCI hierarchy on which the target of the transaction resides. The bridge compares the
specified bus number with three configuration registers that are programmed by initialization
code to determine whether to claim and forward a Type 1 configuration transaction across the
bridge. The three configuration registers are listed below.

• Primary Bus Number (configuration register offset 18h)

• Secondary Bus Number (configuration register offset 19h)

• Subordinate Bus Number (configuration register offset 1Ah)

 If the bridge claims a Type 1 configuration transaction, these three registers also determine how
the transaction is forwarded across the bridge. The following sections discuss the Type 1
transaction forwarding options available to the bridge for both the primary and secondary
interfaces.

 3.1.2.1. Primary Interface

 If a Type 1 configuration transaction occurs on the primary interface of the bridge, the bridge
either ignores the transaction or claims the transaction and forwards it to its secondary interface,
as specified below.

 The bridge ignores a Type 1 configuration transaction on its primary interface, if the bus number
specified by address bits AD[23::16] does not fall within the range of bus numbers specified by
the Secondary Bus Number (inclusive) and Subordinate Bus Number (inclusive) registers. In

Revision 1.1

21

this case, the Type 1 configuration transaction is specifying a bus number that is not located
behind the bridge.

 The bridge claims a Type 1 configuration transaction on its primary interface, if the bus number
specified by address bits AD[23::16] falls within the range of bus numbers specified by the
Secondary Bus Number (inclusive) and Subordinate Bus Number (inclusive) registers. In this
case, the Type 1 configuration transaction is specifying a bus number that is located behind the
bridge. If a bridge forwards a Type 1 configuration transaction to its secondary interface, the
bridge must use one of the following methods:

• Convert the transaction to a Type 0 configuration transaction (to access the configuration
registers of a device attached to the secondary interface of the bridge); or

• Forward the transaction unmodified (as a Type 1 configuration transaction to access a device
that does not reside on the secondary interface of the bridge but is located on a bus segment
further downstream); or

• Convert the transaction to a Special Cycle transaction.

 The following sections describe when each of these Type 1 configuration transaction forwarding
methods is used.

 3.1.2.1.1. Type 1 to Type 0 Conversion

 If a Type 1 configuration transaction occurs on the primary interface of the bridge and the bus
number specified by address bits AD[23::16] matches the Secondary Bus Number, the bridge
claims the transaction, converts it to a Type 0 transaction (as described below), and forwards the
Type 0 transaction to its secondary interface. In this case, a device connected to the secondary
interface of the bridge is the target of the resulting Type 0 configuration transaction.

 To convert the forwarded transaction from a Type 1 to a Type 0 configuration transaction, the
bridge must do the following:

• Modify address bits AD[1::0] so that they are 00b.

• Decode the device number field specified by address bits AD[15::11] of the Type 1
transaction to select the pattern as specified by Table 3-1 to drive on address bits
AD[31::16] during the resulting Type 0 transaction on the secondary bus.

 Address bits AD[10::2] from the Type 1 configuration transaction on the primary interface must
be passed unmodified by the bridge to the resulting Type 0 configuration transaction on its
secondary interface. The value driven on address bits AD[15::11] by the bridge during the
resulting Type 0 configuration transaction is not specified.

 Table 3-1 specifies the pattern to be driven by the bridge on address bits AD[31::16] for each
encoding of the device number field (address bits AD[15::11]). If AD[15] is 0, the pattern
driven on address bits AD[31::16] during the resulting Type 0 transaction on the secondary bus
will have one (and only one) bit set to a 1 (all other bits will be zero). This allows board
designers to use address bits AD[31::16] as IDSEL signals for the devices attached to the
secondary interface of the bridge (by connecting a unique bit of AD[31::16] to each of the
IDSEL pins of the devices attached to the secondary bus). If AD[15] is 1, the bridge must drive

Revision 1.1

22

address bits AD[31::16] to 0 (all bits) during the resulting Type 0 transaction on the secondary
bus.

 When doing a Type 1 to Type 0 conversion, a bridge is permitted to provide additional methods
of IDSEL generation but must always convert AD[31::16] as specified by Table 3-1. Board
designers may use alternate methods of IDSEL generation that are independent from those
provided by the bridge. However, the board designer must follow the interrupt routing
requirements specified in Chapter 9.

 Table 3-1: IDSEL Generation

 Primary
Address

AD[15::11]

 Secondary Address
AD[31::16]

 00000 0000 0000 0000 0001

 00001 0000 0000 0000 0010

 00010 0000 0000 0000 0100

 00011 0000 0000 0000 1000

 00100 0000 0000 0001 0000

 00101 0000 0000 0010 0000

 00110 0000 0000 0100 0000

 00111 0000 0000 1000 0000

 01000 0000 0001 0000 0000

 01001 0000 0010 0000 0000

 01010 0000 0100 0000 0000

 01011 0000 1000 0000 0000

 01100 0001 0000 0000 0000

 01101 0010 0000 0000 0000

 01110 0100 0000 0000 0000

 01111 1000 0000 0000 0000

 1xxxx 0000 0000 0000 0000

Revision 1.1

23

 3.1.2.1.2. Type 1 to Type 1 Forwarding

 If a Type 1 configuration transaction occurs on the primary interface of the bridge and the bus
number specified by address bits AD[23::16] is within the range of bus numbers between the
Secondary Bus Number (exclusive) and the Subordinate Bus Number (inclusive), the bridge
claims the transaction and forwards it unmodified to its secondary interface. In this case, the
target of the configuration transaction does not reside on the secondary interface of the bridge
but is located on a bus segment further downstream. The Type 1 configuration transaction
generated on the secondary bus is potentially addressing a device that resides behind other
bridges that may be attached to this bridge’s secondary interface. Note that a bridge uses exactly
the same address, bus command, byte enables, and data (if a write) received on the primary
interface to generate the Type 1 transaction on its secondary interface (there is no conversion).

 3.1.2.1.3. Type 1 to Special Cycle Conversion

 A bridge claims a Type 1 configuration write transaction that occurs on its primary interface and
converts it to a Special Cycle on its secondary interface when the following conditions are met:

• The bus number specified by address bits AD[23::16] matches the Secondary Bus Number
of the bridge;

• The device number specified by address bits AD[15::11] is all ones (equals 11111b);

• The function number specified by address bits AD[10::8] is all ones (equals 111b); and

• The register number specified by address bits AD[7::2] is all zeros (equals 000000b).

 The address during a Special Cycle is ignored by PCI devices, and the bridge is allowed to drive
any value on AD[31::00] during the address phase. The data for the Special Cycle on the
secondary interface is the write data received from the Type 1 configuration transaction on the
primary interface. Note that Type 1 configuration transactions which specify conversion (by a
bridge) to a Special Cycle are restricted to a data burst length of 1 (see the PCI Local Bus
Specification for more information).

 3.1.2.2. Secondary Interface

 Support of configuration transactions on the secondary interface of a bridge is limited as
compared to support on the primary interface. The bridge is only allowed to claim a Type 1
configuration write transaction on its secondary interface that specifies a conversion to a Special
Cycle on a bus segment that resides above the bridge. In all other conditions, the bridge is
required to ignore a configuration transaction on its secondary interface. This means the bridge
ignores the following configuration transactions on its secondary interface:

• Type 0 configuration transactions (read or write);

• Type 1 configuration read transactions; or

Revision 1.1

24

• Type 1 configuration write transactions if the bus number specified by address bits
AD[23::16] is in the range of bus numbers between the Secondary Bus Number (inclusive)
and Subordinate Bus Number (inclusive) of the bridge

• Type 1 configuration write transaction that does not accurately specify conversion to a
Special Cycle

 3.1.2.2.1. Type 1 to Type 1 Forwarding

 A bridge will forward a Type 1 configuration write transaction unmodified to its primary
interface, provided the following conditions are met:

• The device number specified by address bits AD[15::11] is all ones (equals 11111b);

• The function number specified by address bits AD[10::8] is all ones (equals 111b);

• The register number specified by address bits AD[7::2] is zero (equals 000000b); and

• The bus number specified by address bits AD[23::16] is not between the Secondary Bus
Number (inclusive) and the Subordinate Bus Number (inclusive).

 In this case, the bridge generates a Type 1 configuration write transaction on the primary
interface using exactly the same address and data information that was contained in the
transaction on the secondary interface. The Type 1 transaction generated on the primary
interface of the bridge can then be claimed by another bridge and converted to a Special Cycle
transaction on the destination bus segment.

 3.1.2.2.2. Type 1 to Special Cycle Conversion

 A bridge will convert a Type 1 configuration write transaction received on its secondary
interface to a Special Cycle on its primary interface provided the following conditions are met:

• The device number specified by address bits AD[15::11] is all ones (equals 11111b);

• The function number specified by address bits AD[10::8] is all ones (equals 111b);

• The register number specified by address bits AD[7::2] is zero (equals 000000b); and

• The bus number specified by address bits AD[23::16] matches the Primary Bus Number of
the bridge.

 The address during a Special Cycle is ignored by PCI devices and the bridge is allowed to drive
any value on AD[31::00] during the address phase of the Special Cycle transaction. The data
for the Special Cycle on the primary interface will be the write data from the Type 1
configuration transaction on the secondary interface. Type 1 configuration transactions that
specify conversion (by a bridge) to a Special Cycle are restricted to a burst length of 1 (see the
PCI Local Bus Specification for more information).

Revision 1.1

25

 3.2. PCI-to-PCI Bridge Configuration Space Header Format

 The PCI Local Bus Specification requires all devices, including a PCI-to-PCI bridge, to
implement a 256-byte configuration register address space. The first 64 bytes in each device’s
PCI Configuration Space must adhere to a standard configuration header format. The remaining
192 bytes of the Configuration Space may be used for additional capabilities as defined by the
Capabilities Pointer or for device-specific purposes.

 The 64-byte header format for a bridge is defined in Figure 3-2. The first 16 bytes of the bridge
header implement the common format for all devices as required by the PCI Local Bus
Specification. The next 48 bytes of the device’s Configuration Space are Header Type specific.
A Header Type value of 1 indicates that the device follows the bridge register layout, which is
defined in this specification. The following sections define the basic behavior of configuration
registers and how reset affects them. Then a brief review of the common registers is presented,
followed by a detailed specification of the bridge specific registers.

 31 24 23 16 15 8 7 0

 Device ID Vendor ID 00 h

 Status Command 04h

 Class Code Revision ID 08h

 BIST Header

 Type

 Primary

 Latency Timer

 Cacheline

 Size

 0Ch

 Base Address Register 0 10h

 Base Address Register 1 14h

 Secondary
Latency Timer

 Subordinate

 Bus Number

 Secondary

 Bus Number

 Primary

 Bus Number

 18h

 Secondary Status I/O Limit I/O Base 1Ch

 Memory Limit Memory Base 20h

 Prefetchable Memory Limit Prefetchable Memory Base 24h

 Prefetchable Base Upper 32 Bits 28h

 Prefetchable Limit Upper 32 Bits 2Ch

 I/O Limit Upper 16 Bits I/O Base Upper 16 Bits 30h

 Reserved Capabilities
Pointer

 34h

 Expansion ROM Base Address 38h

 Bridge Control Interrupt Pin Interrupt Line 3Ch

 Figure 3-2: PCI-to-PCI Bridge Configuration Registers

Revision 1.1

26

 3.2.1. Access of Reserved Registers

 Read accesses to reserved or optional registers which are not implemented must complete
normally and return a data value of zero when read. Writes to reserved registers must be treated
as no-ops unless otherwise specified by this document. That is, the write access must be
completed normally and the write data has no effect and is simply discarded.

 3.2.2. Access of Reserved Bit Fields

 Software must be careful when accessing registers that have bit fields reserved for future use.
For read accesses, software must use appropriate masks to extract the defined bits and may not
rely on reserved bits being any particular value. For write accesses, software must ensure that
the values of reserved bit positions are preserved. That is, the values of the reserved bit positions
must first be read, merged with the new values for other bit positions, and the merged data then
written back.

 3.2.3. Reset Events

 The assertion of RST# on the primary interface affects the state of some bits in the bridge
configuration registers. The reset state of each bit is described in the bit definitions of each
register when applicable. The assertion of RST# on the secondary interface does not affect the
state of any register bits in the standard portion of the bridge configuration header (the first 64
bytes). However, setting the Secondary Bus Reset bit (bit 6) in the Bridge Control register (refer
to Section 3.2.5.17.) does affect the internal state of the bridge.

 3.2.4. Common Format Configuration Registers

 The following sections will give a brief description of the common format registers that all PCI
devices must support. For a more detailed discussion, refer to the PCI Local Bus Specification.
All registers and bits are required unless explicitly specified to be optional.

 3.2.4.1. Vendor ID Register

 The Vendor ID register identifies the manufacturer of the device and is assigned by the PCI
Special Interest Group to insure uniqueness. The Vendor ID register must be implemented as a
read-only register.

 3.2.4.2. Device ID Register

 The Device ID register identifies the particular device and is assigned by the vendor. The
Device ID register must be implemented as a read-only register.

Revision 1.1

27

 3.2.4.3. Command Register

 The Command register controls how the bridge behaves on the primary interface and is the same
as all devices with the exception of the VGA Palette Snoop bit. Because a bridge has two
interfaces, some specific clarification of the Command register bits is needed and appears in
Table 3-2. In most cases, the bits in this register affect the behavior of the bridge’s primary
interface only (exceptions are specified).

 Table 3-2: Command Register

 Command
Register

Bit

 Bit Function

 PCI-to-PCI Bridge Specific Notes

 0 I/O Space
Enable

 Controls the bridge’s response as a target to I/O transactions on
the primary interface that address a device that resides behind
the bridge (see Section 3.2.5.6. I/O Base and Limit registers) or
locations within the bridge itself (see Section 3.2.5.1.). If the
bridge does not support an I/O address range or I/O mapped
BAR, then this bit must be implemented as a read-only bit that
returns 0 when read. If the bridge implements an I/O address
range or I/O mapped BAR, then this bit must be implemented
as a read/write bit. The default state of this bit after reset must
be 0.

 The state of internal transaction buffers is not specified when
this bit is disabled after being enabled. The bridge can choose
how it behaves when this condition occurs. Note: software
cannot count on the bridge retaining state and resuming
without loss of data when the bit is re-enabled.

 0 - ignore I/O transactions on the primary interface

 1 - enable response to I/O transactions on the primary
interface

Revision 1.1

28

 1 Memory Space
Enable

 Controls the bridge’s response as a target to memory accesses
on the primary interface that address a device that resides
behind the bridge in both the memory mapped I/O and
prefetchable memory ranges (see Sections 3.2.5.8. and 3.2.5.9.)
or targets a location within the bridge itself (see Section
3.2.5.1.). A bridge must implement this bit as a read/write bit
(support of a memory address range is required). The default
state of this bit after reset must be 0.

 The state of internal transaction buffers is not specified when
this bit is disabled after being enabled. The bridge can choose
how it behaves when this condition occurs. Note: software
cannot count on the bridge retaining state and resuming
without loss of data when the bit is re-enabled.

 0 - ignore all memory transactions on the primary
interface

 1 - enable response to memory transactions on the
primary interface

 2 Bus Master
Enable

 Controls the bridge’s ability to operate as a master on the
primary interface when forwarding memory or I/O transactions
from the secondary interface to the primary interface on behalf
of a master on the secondary interface. This bit does not affect
the ability of a bridge to forward or convert configuration
transactions from the secondary interface to the primary
interface. Note that when this bit is zero, the bridge must
disable response as a target to all memory or I/O transactions
on the secondary interface (they cannot be forwarded to the
primary interface). A bridge must implement this bit as a
read/write bit. The default state of this bit after reset must be
0.

 The state of internal transaction buffers is not specified when
this bit is disabled after being enabled. The bridge can choose
how it behaves when this condition occurs. Note: software
cannot count on the bridge retaining state and resuming
without loss of data when the bit is re-enabled.

 0 - do not initiate memory or I/O transactions on the
primary interface and disable response to memory and
I/O transactions on secondary interface

 1 - enable the bridge to operate as a master on the
primary interface for memory and I/O transactions
forwarded from the secondary interface

Revision 1.1

29

 3 Special Cycle
Enable

 A bridge does not respond as a target to Special Cycle
transactions, so this bit is defined as read-only and must return
0 when read.

 4 Memory Write
and Invalidate
Enable

 A bridge that does not originate a Memory Write and
Invalidate transaction (unless forwarding a transaction for
another master) implements this bit as read-only with a value
of 0. A bridge is allowed to convert a Memory Write
transaction to a Memory Write and Invalidate transaction when
conditions for Memory Write and Invalidate command usage
are meet (see Section 5.2.1. for details). Bridges that
implement such a feature must implement this bit as a
read/write bit with a default state of 0 after reset.

 5 VGA Palette
Snoop Enable

 Controls the bridge’s response to VGA-compatible palette
write accesses. The definition of this bit for a bridge is
different than the PCI Local Bus Specification definition for
devices with a type 0 configuration header.

 Implementation of VGA palette snooping by a bridge is
optional. If VGA palette snooping is not supported, this bit
must be implemented as read-only with a value of 0. If a
bridge supports VGA palette snooping, this bit must be
implemented as a read/write bit with a default state of 0 after
reset.

 If this bit is set, I/O writes in the first 64 KB of the I/O address
space (AD[31::16] is 0000h) with address bits AD[9::0] equal
to 3C6h, 3C8h, and 3C9h (inclusive of ISA aliases -
AD[15::10] are not decoded and may be any value) must be
positively decoded on the primary interface and forwarded to
the secondary interface. Conversely, these same addresses
must be ignored by the bridge on the secondary interface.

 0 - ignore VGA palette accesses on the primary
interface

 1 - enable positive decoding response to VGA palette
writes on the primary interface with I/O address bits
AD[9::0] equal to 3C6h, 3C8h, and 3C9h (inclusive of
ISA aliases - AD[15::10] are not decoded and may be
any value)

 6 Parity Error
Response

 Controls the bridge’s response to address and data parity errors
on its primary interface. If this bit is set, the bridge must take
its normal action when a parity error is detected. If this bit is
cleared, the bridge must ignore any parity errors that it detects
and continue normal operation. A bridge must implement this
bit as a read/write bit with a default state of 0 after reset.

Revision 1.1

30

 7 Wait Cycle
Control

 Controls address/data stepping by the bridge (affects both
interfaces). A bridge that never does stepping must hardwire
this bit to 0. A bridge that always does stepping must hardwire
this bit to 1. A bridge that can do either must make this a
read/write bit with a default state of 1 after reset.

 0 - address/data stepping is disabled

 1 - address/data stepping is enabled

 8 SERR# Enable Controls the enable for the SERR# driver on the primary
interface. A bridge must implement this bit as a read/write bit.
The default state of this bit after reset must be 0.

 0 - disable the SERR# driver on the primary interface

 1 - enable the SERR# driver on the primary interface

 9 Fast Back-to-
Back Enable

 Controls the ability of the bridge to initiate fast back-to-back
transactions to different devices on the primary interface. A
bridge that cannot initiate fast back-to-back transactions must
implement this bit as read-only with a value of 0. A bridge that
is capable of initiating fast back-to-back transactions must
implement this bit as a read/write bit with a default state of 0
after reset. During system initialization, configuration
software will set this bit if all devices on the primary interface
are capable of fast back-to-back operation.

 0 - disable the bridge from initiating fast back-to-back
transactions on the primary interface

 1 - enable the bridge to initiate fast back-to-back
transactions on the primary interface

 15::10 reserved These bits are reserved for future use by the PCI SIG, are read-
only, and must return zero when read.

Revision 1.1

31

 3.2.4.4. Status Register

 The Status register provides information about the primary interface to the system. Table 3-3
provides the specific details for each bit as they apply to a bridge.

 Table 3-3: Status Register

 Status
Register

Bit

 Bit Function

 PCI-to-PCI Bridge Specific Notes

 3::0 reserved These bits are reserved for future use by the PCI SIG and must
be implemented as read-only bits, which return 0 when read.

 4 Capabilities
List

 This bit indicates whether or not the bridge implements a
Capabilities Pointer register pointing to a linked-list data
structure of new capabilities. Support of the Capabilities List
by a bridge is optional.

 0 - the bridge does not support the Capabilities List

 1 - the bridge supports the Capabilities List (Offset
34h is the pointer to the data structure)

 5 66 MHz
Capable

 This bit indicates whether or not the primary interface of the
bridge is capable of operating at 66 MHz. Support of 66 MHz
operation by a bridge is optional. This bit must be
implemented as a read-only bit.

 0 - the primary interface of the bridge is not capable of
66 MHz operation

 1 - the primary interface of the bridge is capable of 66
MHz operation

 6 reserved This bit is reserved for future use and must be implemented as
a read-only bit which returns 0 when read.

 7 Fast Back-to-
Back Capable

 This bit indicates whether or not the primary interface of the
bridge is capable of decoding fast back-to-back transactions
when the transactions are from the same master but to different
targets. (A bridge is required to support fast back-to-back
transactions as a target from the same master.) This bit must
be implemented as a read-only bit.

 0 - the primary interface of the bridge is not capable of
decoding fast back-to-back transactions to different
targets

 1 - the primary interface of the bridge is capable of
decoding fast back-to-back transaction to different
targets

Revision 1.1

32

 8 Master Data
Parity Error

 This bit is used to report the detection of a parity error by the
bridge when it is the master of the transaction. This bit is set if
the following three conditions are all true:

• The bridge is the bus master of the transaction on the
primary interface;

• The bridge asserted PERR# (read transaction) or detected
PERR# asserted (write transaction); and

• The Parity Error Response bit in the Command register is
set.

 Once set, this bit remains set until it is reset by writing a 1 to
this bit location. A bridge must implement this bit and the
default state is 0 after reset.

 0 - no parity error detected on the primary interface

 1 - parity error detected on the primary interface

 10::9 DEVSEL#
Timing

 This read-only bit field encodes the timing of the primary
interface DEVSEL# as listed below. The encoding must
indicate the slowest response time that the bridge uses to assert
DEVSEL# on its primary interface when it is responding as a
target to any PCI transaction except1 a Configuration Read or
Configuration Write.

 00 - fast DEVSEL# decoding

 01 - medium DEVSEL# decoding

 10 - slow DEVSEL# decoding

 11 - reserved

 11 Signaled
Target-Abort

 This bit reports the signaling of a Target-Abort termination by
the bridge, when it responds as the target of a transaction on its
primary interface. Once set, this bit remains set until it is reset
by writing a 1 to this bit location. A bridge must implement
this bit and the default state is 0 after reset.

 0 - Target-Abort not signaled by the bridge on its
primary interface

 1- Target-Abort signaled by the bridge on its primary
interface

 1 The exception is for configuration commands since these are not subtractive decoded. By specifying the slowest
time of all devices on a bus segment, the subtractive decode agent may be able to move in the time in which
subtractive decode can occur.

Revision 1.1

33

 12 Received
Target-Abort

 This bit reports the detection of a Target-Abort termination by
the bridge when it is the master of a transaction on its primary
interface. Once set, this bit remains set until it is reset by
writing a 1 to this bit location. A bridge must implement this
bit and the default state is 0 after reset.

 0 - Target-Abort not detected by the bridge on its
primary interface

 1 - Target-Abort detected by the bridge on its primary
interface

 13 Received
Master-Abort

 This bit reports the detection of a Master-Abort termination by
the bridge, when it is the master of a transaction on its primary
interface. Once set, this bit remains set until it is reset by
writing a 1 to this bit location. A bridge must implement this
bit and the default state of this bit is 0 after reset.

 0 - Master-Abort not detected by the bridge on its
primary interface

 1 - Master-Abort detected by the bridge on its primary
interface

 14 Signaled
System Error

 This bit reports the assertion of SERR# by the bridge on its
primary interface. Once set, this bit remains set until it is reset
by writing a 1 to this bit location. A bridge must implement
this bit and the default state is 0 after reset.

 0 - SERR# not asserted by the bridge on its primary
interface

 1 - SERR# asserted by the bridge on its primary
interface

Revision 1.1

34

 15 Detected
Parity Error

 This bit reports the detection of an address or data parity error
by the bridge on its primary interface. This bit must be set
when any of the following three conditions is true:

• Detects an address parity error as a potential target;

• Detects a data parity error when the target of a write
transaction; or

• Detects a data parity error when the master of a read
transaction.

 The bit is set regardless of the state of the Parity Error
Response bit (bit 6) in the Command register. Once set, this
bit remains set until it is reset by writing a 1 to this bit location.
A bridge must implement this bit and the default state is 0 after
reset.

 0 - address or data parity error not detected by the
bridge on its primary interface

 1- address or data parity error detected by the bridge
on its primary interface

 3.2.4.5. Revision ID Register

 The Revision ID register specifies a device-specific revision identifier. The Revision ID is
allocated by the vendor of the bridge device and must be implemented as a read-only register.

 3.2.4.6. Class Code Register

 The Class Code register is used to identify the function of the device and is broken into three
byte-wide fields: base class code, sub-class code, and programming interface. A bridge returns a
value of 060400h or 060401h when this register is read indicating a base class of 06h (bridge
device), a sub-class code of 04h (PCI-to-PCI bridge), and a programming interface of 00h or
01h. The programming interface code of 00h is assigned to a bridge that supports the
requirements of this specification.

 The programming interface code of 01h is assigned to a bridge that supports the requirements of
this specification plus it also supports subtractive decoding on the primary interface (see the
Device Selection section of the PCI Local Bus Specification for more information on subtractive
decoding). A device-specific configuration bit is permitted to enable and disable subtractive
decoding. If such a bit is implemented and subtractive decoding is enabled, the programming
interface is also set to 01h. When subtractive decoding is disabled, the programming interface is
set to 00h.

Revision 1.1

35

 Implementation Note: Subtractive Decoding PCI-to-PCI Bridge

 The primary use of a subtractive decoding bridge is to connect a laptop system to a docking
station and support legacy ISA devices in the docking station. The following is a list of some
uses and restrictions of a subtractive decoding bridge:

� There can be only one subtractive decoding device on a PCI bus segment.

� A subtractive decoding bridge can support legacy programmed IO devices (like ISA) on the
secondary bus.

� An ISA DMA controller requires DMA request and grant signals between it and the ISA
DMA slave devices. The ISA DMA controller does not support a Retry capability and
therefore no posted writes can exist between the DMA Slave and system memory when a
DMA read is executed. A description of the requirements for supporting an ISA DMA slave
downstream of a subtractive decoding PCI-to-PCI bridge is beyond the scope of this
specification.

� The only unique feature indicated by class code 060401h is the support of subtractive
decoding in addition to all the other requirements of the PCI-to-PCI Bridge Architecture
Specification. No other functional characteristics should be assumed of bridges that have a
060401h class code.

� The purpose of the subtractive decoding class code is to let configuration software that
configures the PCI devices know the bridge supports subtractive decoding.

 3.2.4.7. Cacheline Size Register

 The Cacheline Size register is used when terminating a transaction that uses the Memory Write
and Invalidate command and when prefetching (Memory Read Line and Memory Read Multiple
commands). Note that only cacheline sizes that are a power of two are valid. A bridge is
permitted to limit the number of cacheline sizes that it supports. For example, it may accept
cacheline sizes that are a power of 2 that are less than 128 bytes. If an unsupported value is
written to the Cacheline Size register, the bridge must behave as if a value of 0 was written.

 The Cacheline Size register must be implemented as a read/write register in a bridge that
originates or forwards the Memory Write and Invalidate transaction (see Section 5.2.1. for
details). If the bridge does not originate or forward Memory Write and Invalidate transactions,
or support any of the enhanced memory read commands, the Cacheline Size register must be
implemented as a read-only register that returns 0 when read.

 A detailed description of the operation of the Cacheline Size register is provided in the PCI
Local Bus Specification.

Revision 1.1

36

 3.2.4.8. Latency Timer Register

 The Latency Timer register is required if a bridge is capable of a burst transfer of more than two
data phases on its primary interface. If implemented, the Latency Timer register must be a
read/write register, and the implementation is permitted to limit the granularity to eight PCI
clocks by hardwiring the low three bits to 0. A bridge that is not capable of a burst transfer of
more than two data phases on its primary interface is permitted to hardwire the Latency Timer to
a value of 16 or less. If implemented as a read/write register, the default value of the Latency
Timer after reset must be 0. A detailed description of the operation of the Latency Timer is
provided in the PCI Local Bus Specification.

 3.2.4.9. Header Type Register

 The Header Type register is a read-only register used to indicate the layout for bytes 10h through
3Fh of the device’s configuration space. A bridge returns a value of 01h to indicate that the
header adheres to the PCI-to-PCI bridge Configuration Space layout defined by this
specification. If a bridge is a multi-function device (i.e., it integrates other functions besides the
bridge), then a value of 81h is returned when the Header Type register is read.

 3.2.4.10. BIST Register

 The BIST register is an optional register used for control and status reporting of built-in self test
capability. A bridge that does not support BIST must implement this register as a read-only
register that returns 0 when read. Table 3-4 defines the bits in the BIST register when the bridge
supports BIST. A bridge whose BIST is invoked must not interfere with normal operation of
other devices on the primary bus, but the bridge will not respond as a target (except for
configuration accesses to the BIST register) nor forward any transactions to the opposite bus
during BIST. The effect BIST has on the secondary bus is not specified. Software cannot rely
on any behavior of secondary bus devices or bridge functions (other than configuration register
access of the BIST register) while BIST is active. After BIST completes the bridge and all
downstream devices must be reinitialized by software.

 Table 3-4: BIST Register

 BIST
Register

Bit

 Bit Function

 PCI-to-PCI Bridge Specific Notes

 3::0 BIST Result This bit field reports the result of the BIST operation. A value
of zero means the device passed its test. Non-zero values mean
the device failed. Device-specific failure codes assigned by the
vendor are permitted to be encoded in the non-zero value.

 5::4 reserved These bits are reserved for future use by the PCI SIG and must
be implemented as read-only and return 0 when read.

Revision 1.1

37

 6 Start BIST This bit is used to initiate the BIST operation in the device and
to indicate the completion of the BIST operation. Writing a 1
to this bit location initiates the BIST operation. The bridge
resets this bit to 0 to indicate that it has completed the BIST
operation. Software is permitted to assume the device has
failed, if BIST is not completed after 2 seconds.

 0 - BIST operation complete

 1 - BIST operation in progress

 7 BIST Capable This bit is read-only and returns 1 when read, if the bridge
supports BIST. If the bridge does not support BIST, then this
bit and bits<6:0> must return 0 when read.

 0 - BIST not supported

 1 - BIST supported

 3.2.5. Bridge Specific Configuration Registers

 3.2.5.1. Base Address Registers

 The Base Address registers are optional registers used to map internal (device-specific) registers
into Memory or I/O Spaces. These registers have no effect on the forwarding of transactions
across a bridge as specified by the I/O, Memory, and Prefetchable Memory Base and Limit
registers. Configuration software must map address ranges requested by the Base Address
registers such that they are exclusive of the address ranges specified by the I/O, Memory, and
Prefetchable Memory Base and Limit registers. Device-specific registers mapped by the Base
Address registers must be accessible from both interfaces of the bridge.

 Note that the bridge configuration header layout only provides two Base Address registers. As a
consequence, if a 64-bit memory mapping is needed, then only one Base Address range can be
supported (both Base Address registers will be consumed by the single 64-bit mapping). It is
recommended that the bridge map its internal resources into a 32-bit address space.

 If the bridge implements a single 32-bit Base Address register, the bridge is permitted to use
either location. Base Address registers not used must be implemented as read-only registers that
return 0 when read. Base Address registers must adhere to either the memory base address
register or the I/O base address register format. The following sections give a brief overview of
the bit definitions and typical usage. Refer to the PCI Local Bus Specification for a detailed
discussion of Base Address registers.

Revision 1.1

38

 3.2.5.1.1. Memory Base Address Register Format

 If a bridge implements a Base Address register to map internal device-specific registers to a
memory address range, it must adhere to the following register format.

 Table 3-5: Memory BAR Register

 Memory
Base

Address
Register

Bit

 Bit Function

 PCI-to-PCI Bridge Specific Notes

 0 Memory Space
Indicator

 This bit is implemented as a read-only bit that returns 0 when
read.

 This value indicates a range of memory addresses is being
requested (if a Base Address register is supported).

 2::1 Memory
Mapping Type

 This read-only bit field encodes the attributes of the memory
address range requested by the Base Address register as listed
below.

 00 - Base Address register is 32 bits wide and may be
mapped anywhere in the 32-bit memory space.

 01 - this encoding is not allowed in a bridge

 Note: the 01 encoding was supported in prior
revisions of the PCI Local Bus Specification to
explicitly request mapping of the memory
resource below the first 1 MB boundary. The
intent of bridge architecture defined by this
document is that the bridge be capable of
operation downstream of another bridge. As a
consequence, memory resources must be
capable of being mapped above the first 1 MB
boundary.

 10 - Base Address register is 64 bits wide and can be
mapped anywhere in the 64-bit address space

 11 - reserved

Revision 1.1

39

 3 Prefetchable This read-only bit indicates the prefetchability of the requested
memory address range. If set, the memory address range is
prefetchable (i.e., has no read side effects and returns all bytes
on reads regardless of the byte enables) and byte merging of
write transactions is allowed. If cleared, the memory address
range is not prefetchable and may have read side effects.

 0 - not prefetchable

 1 - prefetchable

 31::4 Base Address This bit field is used to indicate the size of the requested
address range and to map the range to a specific set of
addresses. The usage of the Base Address bit field is explained
in detail in the PCI Local Bus Specification. The default value
for the Base Address bit field after reset is undefined, since it
must be written by software during the configuration process to
determine the resource being requested.

 3.2.5.1.2. I/O Base Address Register Format

 If a bridge implements a Base Address register to map internal device-specific registers to an I/O
address range, it must adhere to the following register format.

 Table 3-6: I/O BAR Register

 Memory
Base

Address
Register

Bit

 Bit Function

 PCI-to-PCI Bridge Specific Notes

 0 I/O Space
Indicator

 This bit is implemented as a read-only bit that returns a 1 when
read.

 This value indicates a range of I/O addresses is being
requested.

 1 reserved This bit is reserved for future use and must be implemented as
a read-only bit that returns 0 when read.

 31::2 Base Address This bit field is used to indicate the size of the requested
address range and to map the range to a specific set of
addresses. The usage of the Base Address bit field is explained
in detail in the PCI Local Bus Specification. The default value
for the Base Address bit field after reset is undefined since it
must be written by software during the configuration process.

Revision 1.1

40

 3.2.5.2. Primary Bus Number Register

 The Primary Bus Number register is used to record the bus number of the PCI bus segment to
which the primary interface of the bridge is connected. Configuration software programs the
value in this register. The bridge uses this register to decode Type 1 configuration transactions
on the secondary interface that must be converted to Special Cycle transactions on the primary
interface. A bridge must2 implement this register as a read/write register and the default state
after reset must be zero.

 3.2.5.3. Secondary Bus Number Register

 The Secondary Bus Number register is used to record the bus number of the PCI bus segment to
which the secondary interface of the bridge is connected. Configuration software programs the
value in this register. The bridge uses this register to determine when to respond to a Type 1
configuration transaction on the primary interface and convert it to a Type 0 transaction on the
secondary interface. The bridge also uses the Secondary Bus Number register and the
Subordinate Bus Number register to determine when to forward Type 1 configuration
transactions upstream. A bridge must implement this register as a read/write register and the
default state after reset must be zero.

 3.2.5.4. Subordinate Bus Number Register

 The Subordinate Bus Number register is used to record the bus number of the highest numbered
PCI bus segment which is behind (or subordinate to) the bridge. Configuration software
programs the value in this register. The bridge uses this register in conjunction with the
Secondary Bus Number register to determine when to respond to a Type 1 configuration
transaction on the primary interface and to pass it to the secondary interface. The bridge also
uses the Secondary Bus Number register and the Subordinate Bus Number register to determine
when to forward Type 1 configuration transactions upstream. A bridge must implement this
register as a read/write register and the default state after reset must be zero.

 3.2.5.5. Secondary Latency Timer Register

 The Secondary Latency Timer register adheres to the definition of the Latency Timer in the PCI
Local Bus Specification but applies only to the secondary interface of a bridge. A bridge that
supports a burst transfer of more than two data phases on its secondary interface must implement
the Secondary Latency Timer as a read/write register. The implementation is permitted to limit
the granularity to eight PCI clocks by hardwiring the low three bits to 0. A bridge which does
not support a burst transfer of more than two data phases on its secondary interface is permitted

 2 An exception is granted to a bridge that is always connected to bus segment 0 by design or implementation. For
example, this occurs when a PCI to PCI bridge is integrated into a host bus bridge that generates bus segment 0. In
this case the bridge may implement this register as a read-only register that returns 0 when read.

Revision 1.1

41

to hardwire the Secondary Latency Timer to a value of 16 or less. If implemented as a read/write
register, the default value of the Secondary Latency Timer after reset must be 0.

 3.2.5.6. I/O Base Register and I/O Limit Register

 The I/O Base and I/O Limit registers are optional and define an address range that is used by the
bridge to determine when to forward I/O transactions from one interface to the other.

 If a bridge does not implement an I/O address range, then both the I/O Base and I/O Limit
registers must be implemented as read-only registers that return zero when read. If a bridge
supports an I/O address range, then these registers must be initialized by configuration software
so default states are not specified.

 If a bridge implements an I/O address range, the upper 4 bits of both the I/O Base and I/O Limit
registers are writable and correspond to address bits AD[15::12]. For the purpose of address
decoding, the bridge assumes that the lower 12 address bits, AD[11::00], of the I/O base address
(not implemented in the I/O Base register) are zero. Similarly, the bridge assumes that the lower
12 address bits, AD[11::00], of the I/O limit address (not implemented in the I/O Limit register)
are FFFh. Thus, the bottom of the defined I/O address range will be aligned to a 4 KB boundary
and the top of the defined I/O address range will be one less than a 4 KB boundary.

 The I/O Limit register can be programmed to a smaller value than the I/O Base register, if there
are no I/O addresses on the secondary side of the bridge. In this case, the bridge will not forward
any I/O transactions from the primary bus to the secondary and will forward all I/O transactions
from the secondary bus to the primary bus.

 The lower four bits of both the I/O Base and I/O Limit registers are read-only, contain the same
value, and encode the I/O addressing capability of the bridge according to Table 3-7.

 Table 3-7: I/O Adressing Capability

 Register Bits [3::0] I/O Addressing Capability

 00h 16 bit I/O addressing

 01h 32 bit I/O addressing

 02h - 0Fh reserved

 If the low four bits of the I/O Base and I/O Limit registers have the value 0h, then the bridge
supports only 16-bit I/O addressing (for ISA compatibility), and for the purpose of address
decoding, the bridge assumes that the upper 16 address bits, AD[31::16], of the I/O base and I/O
limit address (not implemented in the I/O Base and I/O Limit registers) are zero. Note that the
bridge must still perform a full 32-bit decode of the I/O address as required by the PCI Local Bus
Specification (i.e., check that AD[31::16] are 0000h). In this case, the I/O address range
supported by the bridge will be restricted to the first 64 KB of I/O Space (0000 0000h to 0000
FFFFh).

 If the low four bits of the I/O Base and I/O Limit registers are 01h, then the bridge supports
32-bit I/O address decoding, and the I/O Base Upper 16 Bits and the I/O Limit Upper 16 Bits
hold the upper 16 bits, corresponding to AD[31::16], of the 32-bit I/O Base and I/O Limit

Revision 1.1

42

addresses respectively. In this case, system configuration software is permitted to locate the I/O
address range supported by the anywhere in the 4-GB I/O Space. Note that the 4-KB alignment
and granularity restrictions still apply when the bridge supports 32-bit I/O addressing.

 3.2.5.7. Secondary Status Register

 The Secondary Status register is similar in function and bit definition to the Status register
defined in the PCI Local Bus Specification; however, its bits reflect status conditions of the
secondary interface (the Status register reflects the status conditions of the primary interface).

 The notable difference between the Status register bit definitions and the Secondary Status
register bit definitions is that the Signaled System Error bit (which is bit 14 and is described in
Table 3-8) has been redefined to be the Received System Error bit (for the secondary interface).
See Section 6.6. for additional information on the assertion of SERR# on the secondary
interface of a bridge.

 Table 3-8: Secondary Status Registers

 Secondary
Status

Register Bit

 Bit Function

 Description

 4::0 reserved These bits are reserved for future use by the PCI SIG and must
be implemented as read-only bits, which return 0 when read.

 5 66 MHz
Capable

 This bit indicates whether or not the secondary interface of the
bridge is capable of operating at 66 MHz. Support of 66 MHz
operation by a bridge is optional. This bit must be
implemented as a read-only bit.

 0 - the secondary interface of the bridge is not capable
of 66 MHz operation

 1 - the secondary interface of the bridge is capable of
66 MHz operation

 6 reserved This bit is reserved for future use by the PCI SIG and must be
implemented as a read-only bit, which returns 0 when read.

Revision 1.1

43

 7 Fast Back-to-
Back Capable

 This bit indicates whether or not the secondary interface of the
bridge is capable of decoding fast back-to-back transactions
when the transactions are from the same master but to
different targets. (A bridge is required to support fast back-to-
back transactions from the same master.) This bit must be
implemented as a read-only bit.

 0 - the secondary interface of the bridge is not capable
of decoding fast back-to-back transactions to different
targets

 1 - the secondary interface of the bridge is capable of
decoding fast back-to-back transaction to different
targets

 8 Master Data
Parity Error

 This bit is used to report the detection of a parity error by the
bridge when it is the master of a transaction. This bit is set if
the following three conditions are all true:

• The bridge is the bus master of the transaction on the
secondary interface;

• The bridge asserted PERR# (read transaction) or detected
PERR# asserted (write transaction); and

• The Parity Error Response bit in the Bridge Control
register is set.

 Once set, this bit remains set until it is reset by writing a 1 to
this bit location. A bridge must implement this bit and the
default state must be 0 after reset.

 0 - no parity error detected on the secondary interface

 1 - parity error detected on the secondary interface

 10::9 DEVSEL#
Timing

 This read-only bit field encodes the timing of the secondary
interface DEVSEL# as listed below. The encoding must
indicate the slowest response time that the bridge uses to
assert DEVSEL# on its secondary interface when it is
responding as a target to any transaction except a
Configuration Read or Configuration Write.

 00 - fast DEVSEL# decoding

 01 - medium DEVSEL# decoding

 10 - slow DEVSEL# decoding

 11 - reserved

Revision 1.1

44

 11 Signaled
Target-Abort

 This bit reports the signaling of a Target-Abort termination by
the bridge when it responds as the target of a transaction on its
secondary interface. Once set, this bit remains set until it is
reset by writing a 1 to this bit location. A bridge must
implement this bit and the default state must be 0 after reset.

 0 - Target-Abort not signaled by the bridge on its
secondary interface

 1- Target-Abort signaled by the bridge on its
secondary interface

 12 Received
Target-Abort

 This bit reports the detection of a Target-Abort termination by
the bridge when it is the master of a transaction on its
secondary interface. Once set, this bit remains set until it is
reset by writing a 1 to this bit location. A bridge must
implement this bit. The default state of this bit must be 0 after
reset.

 0 - Target-Abort not detected by the bridge on its
secondary interface

 1 - Target-Abort detected by the bridge on its
secondary interface

 13 Received
Master-Abort

 This bit reports the detection of a Master-Abort termination by
the bridge when it is the master of a transaction on its
secondary interface. Once set, this bit remains set until it is
reset by writing a 1 to this bit location. A bridge must
implement this bit and the default state must be 0 after reset.

 0 - Master-Abort not detected by the bridge on its
secondary interface

 1 - Master-Abort detected by the bridge on its
secondary interface

 14 Received
System Error

 This bit reports the detection of an SERR# assertion on the
secondary interface of the bridge. Once set, this bit remains
set until it is reset by writing a 1 to this bit location. The
default state must be 0 after reset.

 0 - SERR# assertion on the secondary interface has
not been detected

 1 - SERR# assertion on the secondary interface has
been detected

Revision 1.1

45

 15 Detected
Parity Error

 This bit reports the detection of an address or data parity error
by the bridge on its secondary interface. This bit must be set
when any of the following three conditions is true:

• Detects an address parity error as a potential target;

• Detects a data parity error when the target of a write
transaction; or

• Detects a data parity error when the master of a read
transaction.

 The bit is set regardless of the state of the Parity Error
Response Enable bit (bit 0) in the Bridge Control register.
Once set, this bit remains set until it is reset by writing a 1 to
this bit location. A bridge must implement this bit, and the
default state must be 0 after reset.

 0 - address or data parity error not detected by the
bridge on its secondary interface

 1- address or data parity error detected by the bridge
on its secondary interface

 3.2.5.8. Memory Base Register and Memory Limit Register

 The Memory Base and Memory Limit registers are both required registers that define a memory
mapped I/O address range which is used by the bridge to determine when to forward memory
transactions from one interface to the other (see Section 4.3. for additional details).

 The upper 12 bits of both the Memory Base and Memory Limit registers are read/write and
correspond to the upper 12 address bits, AD[31::20], of 32-bit addresses. For the purpose of
address decoding, the bridge assumes that the lower 20 address bits, AD[19::00], of the memory
base address (not implemented in the Memory Base register) are zero. Similarly, the bridge
assumes that the lower 20 address bits, AD[19::00], of the memory limit address (not
implemented in the Memory Limit register) are F FFFFh. Thus, the bottom of the defined
memory address range will be aligned to a 1 MB boundary and the top of the defined memory
address range will be one less than a 1 MB boundary.

 The Memory Limit register must be programmed to a smaller value than the Memory Base
register if there are no memory-mapped I/O addresses on the secondary side of the bridge. If
there is no prefetchable memory (see Section 3.2.5.9.), and there is no memory-mapped I/O on
the secondary side of the bridge, then the bridge will not forward any memory transactions from
the primary bus to the secondary bus and will forward all memory transactions from the
secondary bus to the primary bus.

 The bottom four bits of both the Memory Base and Memory Limit registers are read-only and
return zeros when read.

 These registers must be initialized by configuration software so default states are not specified.

Revision 1.1

46

 3.2.5.9. Prefetchable Memory Base Register and Prefetchable
Memory Limit Register

 The Prefetchable Memory Base and Prefetchable Memory Limit registers are optional. They
define a prefetchable memory address range which is used by the bridge to determine when to
forward memory transactions from one interface to the other (see Section 4.4. for additional
details).

 If a bridge does not implement a prefetchable memory address range, then both Prefetchable
Memory Base and Prefetchable Memory Limit registers must be implemented as read-only
registers which return zero when read. If a bridge implements a prefetchable memory address
range, then both of these registers must be implemented as read/write registers. If a bridge
supports a prefetchable memory address range, then these registers must be initialized by
configuration software so default states are not specified.

 If the bridge implements a prefetchable memory address range, the upper 12 bits of the register
are read/write and correspond to the upper 12 address bits, AD[31::20], of 32-bit addresses. For
the purpose of address decoding, the bridge assumes that the lower 20 address bits, AD[19::00],
of the prefetchable memory base address (not implemented in the Prefetchable Memory Base
register) are zero. Similarly, the bridge assumes that the lower 20 address bits, AD[19::00], of
the prefetchable memory limit address (not implemented in the Prefetchable Memory Limit
register) are F FFFFh. Thus, the bottom of the defined prefetchable memory address range will
be aligned to a 1 MB boundary and the top of the defined memory address range will be one less
than a 1 MB boundary.

 The Prefetchable Memory Limit register must be programmed to a smaller value than the
Prefetchable Memory Base register if there is no prefetchable memory on the secondary side of
the bridge. If there is no prefetchable memory, and there is no memory-mapped I/O (see
Section 3.2.5.8.) on the secondary side of the bridge, then the bridge will not forward any
memory transactions from the primary bus to the secondary and will forward all memory
transactions from the secondary bus to the primary bus.

 The bottom 4 bits of both the Prefetchable Memory Base and Prefetchable Memory Limit
registers are read-only, contain the same value, and encode whether or not the bridge supports
64-bit addresses. If these four bits have the value 0h, then the bridge supports only 32 bit
addresses. If these four bits have the value 01h, then the bridge supports 64-bit addresses and the
Prefetchable Base Upper 32 Bits and Prefetchable Limit Upper 32 Bits registers hold the rest of
the 64-bit prefetchable base and limit addresses respectively. All other encodings are reserved.

 3.2.5.10. Prefetchable Base Upper 32 Bits and Prefetchable Limit
Upper 32 Bits Registers

 The Prefetchable Base Upper 32 Bits and Prefetchable Limit Upper 32 Bits registers are optional
extensions to the Prefetchable Memory Base and Prefetchable Memory Limit registers.

 If the Prefetchable Memory Base and Prefetchable Memory Limit registers indicate support for
32-bit addressing, then the Prefetchable Base Upper 32 Bits and Prefetchable Limit Upper 32
Bits registers are both implemented as read-only registers that return zero when read. If the
Prefetchable Memory Base and Prefetchable Memory Limit registers indicate support for 64-bit

Revision 1.1

47

addressing, then the Prefetchable Base Upper 32 Bits and Prefetchable Limit Upper 32 Bits
registers are implemented as read/write registers. If these registers are implemented as
read/write registers, they must be initialized by configuration software so default states are not
specified.

 If a 64-bit prefetchable memory address range is supported, the Prefetchable Base Upper 32 Bits
and Prefetchable Limit Upper 32 Bits registers specify the upper 32-bits, corresponding to
AD[63::32], of the 64-bit base and limit addresses which specify the prefetchable memory
address range (see Section 4.4.2. for additional details).

 3.2.5.11. I/O Base Upper 16 Bits and I/O Limit Upper 16 Bits Registers

 The I/O Base Upper 16 Bits and I/O Limit Upper 16 Bits registers are optional extensions to the
I/O Base and I/O Limit registers. If the I/O Base and I/O Limit registers indicate support for 16-
bit I/O address decoding, then the I/O Base Upper 16 Bits and I/O Limit Upper 16 Bits registers
are implemented as read-only registers which return zero when read. If the I/O Base and I/O
Limit registers indicate support for 32-bit I/O addressing, then the I/O Base Upper 16 Bits and
I/O Limit Upper 16 Bits registers must be initialized by configuration software so default states
are not specified.

 If 32-bit I/O address decoding is supported, the I/O Base Upper 16 Bits and the I/O Limit Upper
16 Bits register specify the upper 16 bits, corresponding to AD[31::16], of the 32-bit base and
limit addresses respectively, that specify the I/O address range (see Section 4.2. for additional
details).

 3.2.5.12. Capabilities Pointer

 This optional register is used to point to a linked list of additional capabilities implemented by
this device. The Capabilities List Section and Capability IDs Appendix in the PCI Local Bus
Specification specify the linked list data structure and a list of defined capabilities, respectively.

 If the Capabilities List bit (bit 4) in the Status register is zero, then the default state of this
register is zero after reset. However, if subsequently written, the register may return an
indeterminate value. Therefore, software is not permitted to write this register.

 If the Capabilities List bit (bit 4) in the Status register is set, then this register must be
implemented as a read-only register. The bottom two bits of the pointer are reserved for future
use and must be set to 00b. However, software cannot depend on them being zero and must
mask them off before using this register as a pointer to a configuration register which holds the
first entry of a linked list of new capabilities.

 3.2.5.13. Reserved Registers at 35h, 36h, and 37h

 Read accesses to these registers must complete normally and return a value of zero after reset.
However, if subsequently written, these registers may return an indeterminate value.

Revision 1.1

48

 3.2.5.14. Expansion ROM Base Address Register

 The Expansion ROM Base Address register is an optional register that adheres to the definition
contained in the PCI Local Bus Specification. Note, however, that the offset of the register
within the Type 1 configuration header for a bridge is different than that of the Type 0
configuration header specified in the PCI Local Bus Specification.

 3.2.5.15. Interrupt Line Register

 The Interrupt Line register is a read/write register used to communicate interrupt line routing
information between initialization code and the device driver. This register must be initialized
by initialization code so a default state is not specified. The value written to the Interrupt Line
register specifies the routing of the device’s INTx# pin to the system interrupt controller. If a
bridge does not implement an interrupt signal pin, then POST (power-on self test) code must
write FFh to this register.

 3.2.5.16. Interrupt Pin Register

 The Interrupt Pin register is a read-only register that adheres to the definition in the PCI Local
Bus Specification. The Interrupt Pin register is used to indicate which interrupt pin the bridge
uses. A value of 1 corresponds to INTA#. A value of 2 corresponds to INTB#. A value of 3
corresponds to INTC#. A value of 4 corresponds to INTD#.

 If a bridge is not a multi-function device, it may only use INTA# as its interrupt pin (if
implemented). A bridge that does not implement any interrupt pins must return a 0 for this
register when read.

Revision 1.1

49

 3.2.5.17. Bridge Control Register

 The Bridge Control register provides extensions to the Command register that are specific to a
bridge. The Bridge Control register provides many of the same controls for the secondary
interface that are provided by the Command register for the primary interface. There are some
bits that affect the operation of both interfaces of the bridge. Definitions for each bit are
specified in Table 3-9.

 Table 3-9: Bridge Control Register

 Bridge
Control
Register

Bit

 Bit Function

 Description

 0 Parity Error
Response
Enable

 Controls the bridge’s response to address and data parity errors
on the secondary interface. If this bit is set, the bridge must
take its normal action when a parity error is detected. If this
bit is cleared, the bridge must ignore any parity errors that it
detects and continue normal operation. A bridge must generate
parity even if parity error reporting is disabled. The default
state of this bit after reset must be 0.

 0 - ignore address and data parity errors on the
secondary interface

 1 - enable parity error detection and reporting on the
secondary interface

 1 SERR# Enable Controls the forwarding of secondary interface SERR#
assertions to the primary interface. The bridge will assert
SERR# on the primary interface when all of the following are
true:

• SERR# is asserted on the secondary interface;

• This bit is set; and

• The SERR# Enable bit is set in the Command register.

 The default state of this bit after reset must be 0.

 0 - disable the forwarding of secondary SERR# to
primary SERR#

 1 - enable the forwarding of secondary SERR# to
primary SERR#

Revision 1.1

50

 2 ISA Enable Modifies the response by the bridge to ISA I/O addresses. This
applies only to I/O addresses that are enabled by the I/O Base
and I/O Limit registers and are in the first 64 KB of PCI I/O
address space (0000 0000h to 0000 FFFFh). If this bit is set,
the bridge will block any forwarding from primary to
secondary of I/O transactions addressing the last 768 bytes in
each 1 KB block. In the opposite direction (secondary to
primary), I/O transactions will be forwarded if they address the
last 768 bytes in each 1K block. The default state of this bit
after reset must be 0.

 0 - forward downstream all I/O addresses in the
address range defined by the I/O Base and I/O Limit
registers

 1 - forward upstream ISA I/O addresses in the address
range defined by the I/O Base and I/O Limit registers
that are in the first 64 KB of PCI I/O address space
(top 768 bytes of each 1 KB block)

Revision 1.1

51

 3 VGA Enable Modifies the response by the bridge to VGA compatible
addresses. If the VGA Enable bit is set, the bridge will
positively decode and forward the following accesses on the
primary interface to the secondary interface (and, conversely,
block the forwarding of these addresses from the secondary to
primary interface):

• memory accesses in the range 000A 0000h to
000B FFFFh

• I/O addresses in the first 64 KB of the I/O address space
(AD[31:16] are 0000h) where AD[9:: 0] are in the ranges
3B0h to 3BBh and 3C0h to 3DFh (inclusive of ISA address
aliases - AD[15::10] are not decoded)

 If the VGA Enable bit is set, forwarding of these accesses is
independent of the I/O address range and memory address
ranges defined by the I/O Base and Limit registers, the
Memory Base and Limit registers, and the Prefetchable
Memory Base and Limit registers of the bridge. (Forwarding
of these accesses is also independent of the settings of the ISA
Enable bit (in the Bridge Control register) or VGA Palette
Snoop bits (in the Command register), when the VGA Enable
bit is set. Forwarding of these accesses is qualified by the I/O
Enable and Memory Enable bits in the Command register.)
The default state of this bit after reset must be 0.

 0 - do not forward VGA compatible memory and I/O
addresses from the primary to secondary interface
(addresses defined above) unless they are enabled for
forwarding by the defined I/O and memory address
ranges

 1 - forward VGA compatible memory and I/O
addresses (addresses defined above) from the primary
interface to the secondary interface (if the I/O Enable
and Memory Enable bits are set) independent of the
I/O and memory address ranges and independent of the
ISA Enable bit

 4 reserved This bit is reserved for future use by the PCI SIG, is read-only,
and must return zero when read.

Revision 1.1

52

 5 Master-Abort
Mode

 Controls the behavior of a bridge when a Master-Abort
termination occurs on either interface while the bridge is the
master of the transaction. The default state of this bit must be
0 after reset.

 If the Master-Abort mode bit is cleared and a non-locked
transaction that crosses the bridge terminates with a Master-
Abort on the destination bus, reads will return all ones and
write data will be accepted by the bridge and then discarded.
See Section 6.3.3. for additional Master-Abort requirements
during a locked transaction sequence.

 If the Master-Abort Mode bit is set, the bridge signals a
Target-Abort to the requesting master if the corresponding
transaction on the other side of the bridge terminates with a
Master-Abort and the transaction has not yet been concluded
(reads and non-posted writes). If the transaction on the
originating bus has completed (posted write), then the bridge
must assert SERR# on the primary interface (provided the
SERR# Enable bit is set in the Command register).

 0 - do not report Master-Aborts (return FFFF FFFFh
on reads and discard data on writes)

 1 - report Master-Aborts by signaling Target-Abort if
possible or by the assertion of SERR# (if enabled)

 6 Secondary Bus
Reset

 Forces the assertion of RST# on the secondary interface. The
secondary RST# will be asserted by the bridge whenever this
bit is set or the RST# pin on the primary interface is asserted.
When this bit is cleared, RST# on the secondary bus will be
asserted whenever the primary interface RST# is asserted.
The bridge’s secondary bus interface and any buffers between
the two interfaces (primary and secondary) must be initialized
back to their default state whenever this bit is set. The primary
bus interface and all configuration space registers must not be
affected by the setting of this bit. The default state of this bit
must be 0 after reset.

 0 - do not force the assertion of the secondary
interface RST#

 1 - force the assertion of the secondary interface
RST#

Revision 1.1

53

 7 Fast Back-to-
Back Enable

 Controls ability of the bridge to generate fast back-to-back
transactions to different devices on the secondary interface. A
bridge that cannot generate fast back-to-back transactions must
implement this bit as a read-only bit that returns 0 when read.
A bridge that is capable of initiating fast back-to-back
transaction must implement this bit as a read/write bit with a
default state of 0 after reset. During system initialization,
configuration software will set this bit if all devices on the
secondary interface are capable of fast back-to-back operation.

 0 - disable generation of fast back-to-back transactions
on the secondary interface

 1 - enable generation of fast back-to-back transactions
on the secondary interface

 8 Primary
Discard Timer

 Selects the number of PCI clocks that the bridge will wait for a
master on the primary interface to repeat a Delayed
Transaction request (see Section 5.3.2. for more details). The
counter starts once the Delayed Completion (the completion of
the Delayed Transaction on the secondary interface) has
reached the head of the upstream queue of the bridge (i.e., all
ordering requirements have been satisfied and the bridge is
ready to complete the Delayed Transaction with the originating
master on the primary bus). If the originating master does not
repeat the transaction before the counter expires, the bridge
will delete the Delayed Transaction from its queue and set the
Discard Timer Status bit. The default state of this bit after
reset is 0.

 0 - the Primary Discard Timer counts 215 PCI clock
cycles

 1 - the Primary Discard Timer counts 210 PCI clock
cycles

Revision 1.1

54

 9 Secondary
Discard Timer

 Selects the number of PCI clocks that the bridge will wait for a
master on the secondary interface to repeat a Delayed
Transaction request (see Section 5.3.2. for more details). The
counter starts once the Delayed Completion (the completion of
the Delayed Transaction on the primary interface) has reached
the head of the downstream queue of the bridge (i.e., all
ordering requirements have been satisfied and the bridge is
ready to complete the Delayed Transaction with the originating
master on the secondary bus). If the originating master does
not repeat the transaction before the counter expires, the bridge
will delete the Delayed Transaction from its queue and set the
Discard Timer Status bit. The default state of this bit after
reset is 0.

 0 - the Secondary Discard Timer counts 215 PCI clock
cycles

 1 - The Secondary Discard Timer counts 210 PCI clock
cycles

 10 Discard Timer
Status

 This bit is set to a 1 when either the Primary Discard Timer or
Secondary Discard Timer expires and a Delayed Completion is
discarded from a queue in the bridge. The default state of this
bit after reset must be 0. Once set, this bit remains set until it
is reset by writing a 1 to this bit location.

 0 - no discard timer error

 1 - discard timer error

 11 Discard Timer
SERR# Enable

 When set to 1, this bit enables the bridge to assert SERR# on
the primary interface when either the Primary Discard Timer or
Secondary Discard Timer expires and a Delayed Transaction is
discarded from a queue in the bridge. The default state of this
bit must be 0 after reset.

 0 - do not assert SERR# on the primary interface as a
result of the expiration of either the Primary Discard
Timer or Secondary Discard Timer

 1 - assert SERR#�RQ the primary interface if either the
Primary Discard Timer or Secondary Discard Timer
expires and a Delayed Transaction is discarded from a
queue in the bridge

 15::12 reserved These bits are reserved for future use by the PCI SIG, are read-
only, and must return zero when read.

Revision 1.1

55

 3.2.6. Slot Numbering Capabilities List Item

 The slot numbering registers are optional. They are required for bridges that connect to PCI
expansion chassis. Refer to Section 13.1. for additional details on slot numbering.

 If the slot numbering registers are supported, the Capabilities List bit (bit 4 in the Status register)
must be set to a 1, and the Slot Numbering Capabilities registers shown in Figure 3-3 must
appear in the Capabilities List. The value stored in the Capabilities Pointer registers (offset 34h)
points to the Slot Numbering Capabilities registers, if they are the first item in the Capabilities
List. If not, a subsequent list item points to the Slot Numbering Capabilities registers.

 31 24 23 16 15 8 7 0

 Chassis
Number

 Expansion Slot Pointer to Next
ID

 Slot Numbering
Capabilities ID

 Figure 3-3: Slot Numbering Capabilities Register

 3.2.6.1. Slot Numbering Capabilities ID

 This register identifies the Capabilities List item as a Slot Numbering Registers item. It is read-
only and returns the value of 04h when read.

 3.2.6.2. Pointer to Next ID

 This register contains the pointer to the next Capabilities List item, if supported. If there are no
subsequent list items, this register will contain the value 0. This register is read-only.

 3.2.6.3. Expansion Slot Register

 The Expansion Slot register provides information used by system software in calculating the slot
number of a device plugged into a PCI slot in an expansion chassis. Refer to Section 13.3. for a
complete discussion of the use of the Expansion Slot register.

 The register is read-only and is initialized by hardware after reset. The method by which the
system designer establishes the default value of this register is not controlled by this
specification, but the content must be valid when the PCI system initialization software reads the
register to determine how the system is configured. Any alternative that guarantees the contents
will be valid before the PCI system initialization software executes is acceptable. For example,
the bridge could initialize the Expansion Slot register based on the state of certain pins on the
bridge at RST# time. In this approach, the expansion chassis designer pulls these pins up or
down based on how the expansion chassis is wired. After RST#, the pins assume their normal
functions. In another example, the inputs to an external shift register could be hardwired with
this information and the shift register read by the bridge at RST# time. More elaborate schemes
involving serial EEPROMs would be possible as well.

Revision 1.1

56

 Table 3-10: Expansion Slot Register

 Expansion
Slot

Register
Bit

 Bit Function

 Description

 4::0 Expansion
Slots
Provided

 Contains the binary value of the number of PCI expansion slots
located directly on the secondary interface of this bridge.
Expansion slots located behind additional (subordinate) bridges
on the secondary interface are not counted in this field.

 5 First in
Chassis

 If this bit is set, it indicates that this bridge is the first in an
expansion chassis. A bridge with this set indicates the
existence of an expansion chassis that requires a unique chassis
number.

 0 - This is not a parent bridge.

 1 - This is a parent bridge.

 7::6 reserved These bits are reserved for future use by the PCI SIG, are read
only, and must return zero when read.

 3.2.6.4. Chassis Number Register

 The Chassis Number register contains the physical chassis number for the slots on this bridge’s
secondary interface. A different non-zero chassis number is assigned by system initialization
software to each separate expansion unit that contains PCI expansion slots. Multiple bridges
contained in the same chassis are assigned the same chassis number. Chassis number 0 is
reserved for the chassis containing the CPU that initializes the Configuration Space for the
system.

 This register is read/write and may optionally be either non-volatile or initialized to zero by
reset. If the system configuration software finds the number in this register is non-zero and does
not conflict with another chassis number, the system configuration software will leave the
register value unchanged. If the system configuration software finds this register is zero or that
it conflicts with another chassis number, the configuration software will write a new chassis
number into this register.

 The method of storage and retrieval of the non-volatile chassis number is not controlled by this
specification, so any technology that holds information across a power cycle will suffice. For
example, the register can be a simple read/write register with a battery backup. Alternatively,
the chassis number can be stored in a serial EEPROM and shifted in at power up.

 Making the Chassis Number register non-volatile provides the most capability to the end user of
an expansion chassis. In this case, even if bridges to expansion chassis are rearranged in the
system, the chassis number remains unchanged unless a chassis is moved from one system to
another and causes a duplication of chassis numbers. Therefore, this alternative is recommended
for bridges that have non-volatile storage capabilities.

 Refer to Section 13.4. for a complete discussion of the use of the Chassis Number register.

Revision 1.1

57

�

 Chapter 4
Address Decoding

 4.1. Address Ranges

 The configuration header for a bridge defines a set of base and limit registers for an optional I/O
address range, a required memory mapped I/O address range, and an optional prefetchable
memory address range. The base and limit address registers define the address ranges in which a
bridge forwards transactions from its primary interface to its secondary interface. These
registers are effectively inversely decoded to determine the address ranges on the secondary
interface of a bridge in which transactions will be forwarded upstream (from the secondary to
primary interface). A bridge does not perform any address translation (a flat addressing model is
used). The following sections describe each of these address ranges in more detail. Optional
support for VGA address decoding and subtractive decode are also described at the end of this
chapter.

 4.2. I/O

 The optional I/O Base, I/O Limit, I/O Base Upper 16 Bits, and I/O Limit Upper 16 Bits registers
in the bridge configuration header specify an address range that is used by the bridge to
determine whether to forward I/O read and I/O write transactions across the bridge. Note that if
the I/O Base is set to a value larger than the I/O Limit, the address range is disabled (see
Section 3.2.5.6.). The response by the bridge to I/O transactions is also affected by the register
bits listed below.

• I/O Enable bit in the Command register

• Master Enable bit in the Command register

• VGA Palette Snoop Enable bit in the Command register

• VGA Enable bit in the Bridge Control register

• ISA Enable bit in the Bridge Control register

 The I/O Enable bit of the Command register must be set to enable the bridge’s I/O address range
(as required by the PCI Local Bus Specification). The VGA Enable Bit, VGA Palette Snoop

Revision 1.1

58

Enable bit, and the ISA Enable bit are discussed in later sections. More details can be found for
all bits in the descriptions of the appropriate registers.

 The I/O base and I/O limit registers are used by a bridge to determine whether to forward I/O
transactions across the bridge as illustrated in Figure 4-1. The I/O address range defined by
these registers is always aligned to a 4 KB boundary and has a size granularity of 4 KB. A
bridge forwards I/O read and I/O write transactions from its primary interface to its secondary
interface (downstream) if the address is in the range defined by the I/O base and I/O limit
registers (when the base is less than or equal to the limit). Conversely, I/O transactions on the
secondary bus in the address range defined by these registers are not forwarded upstream by the
bridge. I/O transactions on the secondary bus that are outside the defined address range are
forwarded upstream (from the secondary interface to the primary interface). If a bridge does not
implement an I/O address range, the bridge must forward all I/O transactions on its secondary
interface upstream to its primary interface.

������������)))�K

��%��������%)))�K

��$��������$)))�K

������������)))�K

������������)))�K

��&��������))))�K

3ULPDU\
,QWHUIDFH

6HFRQGDU\
,QWHUIDFH

 Figure 4-1: I/O Address Range Example

Revision 1.1

59

 4.2.1. ISA Mode

 Bridges also provide an ISA Enable bit in the Bridge Control register. This bit affects only I/O
addresses that are in the bridge’s I/O range (as defined by the I/O Base, I/O Base Upper 16 Bits,
I/O Limit, and I/O Limit Upper 16 Bits) and in the first 64 KB of PCI I/O Space (0000 0000h to
0000 FFFFh). If this bit is set and the I/O address meets the stated constraints, the bridge will
block forwarding of I/O transactions downstream (from the primary interface to the secondary
interface) if the I/O address is in the top 768 bytes of each naturally aligned 1 KB block.

 Conversely, if ISA addressing mode is enabled, I/O transactions on the secondary bus in the top
768 bytes of any 1 KB address block within the first 64 KB of PCI I/O Space will be forwarded
upstream to the primary bus, even if the address is between the I/O base and I/O limit addresses.
Figure 4-2 illustrates this mapping. The combination of the 4 KB granularity and the ISA Enable
bit results in I/O address decoding on the secondary interface of the bridge that is similar to
EISA slot decoding. Devices on the secondary interface are permitted to be mapped to the first
256 bytes of each naturally aligned 1 KB block within the defined I/O address range.

 The ISA Enable bit only affects the I/O address decoding behavior of the bridge. It does not
affect the bridge's prefetching, posting, ordering, or error handling behavior.

Revision 1.1

60

��['�������[)))�K

��[��������[�))�K

3ULPDU\
,QWHUIDFH

6HFRQGDU\
,QWHUIDFH

��[��������[�))�K

��[��������[�))�K

��[��������[�))�K

��[��������[�))�K

��[��������[%))�K

��[&�������[&))�K

 Figure 4-2: ISA Mode I/O Address Range Example

 4.3. Memory Mapped I/O

 The memory mapped I/O range is intended to be used to map memory address ranges of devices
that are not prefetchable (i.e., have side effects on reads or non-memory-like behavior). The
bridge will not prefetch read data if a transaction using the Memory Read command crosses the
bridge in a memory mapped I/O address range (see Section 5.1.). Prefetching of read data is
allowed in the memory mapped I/O address range when a transaction using the Memory Read
Line or Memory Read Multiple commands is used. However, bridges are not required to support
prefetching in the memory mapped I/O range and may choose to alias Memory Read Line and
Memory Read Multiple commands to a Memory Read command.

 The Memory Mapped I/O Base and Memory Mapped I/O Limit registers are required for a
bridge. They are used by the bridge to determine whether to forward transactions using the
Memory Read, Memory Read Line, Memory Read Multiple, Memory Write, and Memory Write
and Invalidate commands across the bridge. Note that if the Memory Mapped I/O Base is set to

Revision 1.1

61

a value higher than the Memory Mapped I/O Limit, the address range is disabled (see
Section 3.2.5.8.). The register bits listed below also affect the response by the bridge to memory
transactions.

• Memory Enable bit in the Command register

• Master Enable bit in the Command register

• VGA Enable bit in the Bridge Control register

 The Memory Enable bit in the bridge’s Command register must be set to enable the memory
mapped I/O address range. The VGA Enable Bit is discussed in Section 4.5.1. More details can
be found for all bits in the descriptions of the appropriate registers. The prefetchable memory
address range (see Section 3.2.5.9.) defined by the prefetchable memory address registers also
affects response to memory transactions.

 A bridge forwards PCI memory transactions from its primary interface to its secondary interface
(downstream) if a memory address is in the range defined by the Memory Base and Memory
Limit registers (when the base is less than or equal to the limit) as illustrated in Figure 4-3.
Conversely, a memory transaction on the secondary interface that is within this address range
will not be forwarded upstream to the primary interface. Any memory transactions on the
secondary interface that are outside this address range will be forwarded upstream to the primary
interface (provided they are not in the address range defined by the prefetchable memory address
range registers).

Revision 1.1

62

3ULPDU\
,QWHUIDFH

6HFRQGDU\
,QWHUIDFH

EDVH

OLPLW

 Figure 4-3: Memory Address Range Example

 4.4. Prefetchable Memory

 The optional prefetchable memory range is intended to be used to map memory address ranges
of devices that are prefetchable (i.e., have memory-like behavior and do not have side effects on
reads). The bridge can prefetch read data when a transaction using any memory read command
(Memory Read, Memory Read Line, or Memory Read Multiple) crosses the bridge in a
prefetchable memory address range (see Section 5.1.).

Revision 1.1

63

 The optional Prefetchable Memory Base, Prefetchable Memory Limit, Prefetchable Base Upper
32-bits, and Prefetchable Limit Upper 32-bits registers in the bridge configuration header specify
an address range that is used by the bridge to determine whether to forward transactions using
Memory Read, Memory Read Line, Memory Read Multiple, Memory Write, and Memory Write
and Invalidate commands across the bridge. Note that if the Prefetchable Memory Base register
is set to a value higher than the Prefetchable Memory Limit register, the address range is
disabled (see Section 3.2.5.9.). The register bits listed below also affect the response by the
bridge to memory transactions.

• Memory Enable bit in the Command register

• Master Enable bit in the Command register

• VGA Enable bit in the Bridge Control register

The Memory Enable bit in the bridge’s Command register must be set to enable the prefetchable
memory address range. The VGA Enable Bit is discussed in Section 4.5.1. More details can be
found for all bits in the descriptions of the appropriate registers. The memory mapped I/O
address range (see Section 4.3.) defined by the Memory Base and Memory Limit registers also
affects the response to memory transactions. A bridge forwards memory transactions from its
primary interface to its secondary interface (downstream) if a memory address is in the range
defined by the Prefetchable Memory Base and Prefetchable Memory Limit registers (when the
base is less than or equal to the limit). Conversely, a memory transaction on the secondary
interface that is within this address range will not be forwarded upstream to the primary
interface. Any memory transactions on the secondary interface that are outside this address
range will be forwarded upstream to the primary interface (provided they are not in the address
range defined by the memory mapped I/O address range registers).

4.4.1. 64-bit Addressing

Bridges have numerous options regarding 64-bit addressing. The Dual Address Cycle (DAC)
command defined by the PCI Local Bus Specification is used to implement 64-bit addressing on
PCI. During a DAC, the high 32-bits of address, address bits AD[63::32], are transmitted on
AD[31::00] during the second address phase. This allows devices with only 32-bit data paths to
utilize 64-bit addressing. DACs are used to access locations that are not in the first 4 GB of PCI
Memory Space. Addresses in the first 4 GB region of Memory Space always use a single
address cycle (SAC) and never use a DAC.

Revision 1.1

64

Implementation Note: 64-bit Addressing

In the simplest solution, a bridge may chose to ignore Dual Address Cycles on its primary PCI
bus and not forward any DAC commands downstream. In this case, the 64-bit extensions of the
Prefetchable Memory Base and Prefetchable Memory Limit registers (upper 32-bits) are not
implemented. This solution assumes that no targets located downstream of the bridge support
64-bit addressing.

If Dual Address Cycles are not supported on the primary interface of the bridge, the bridge must
forward all DAC commands upstream (from its secondary to primary interface). This allows
masters downstream of a bridge to access system memory that may be located above the first
4 GB. The only targets that seem likely to require 64-bit addressing would be devices that
implement large buffers that would typically have memory-like behavior and indicate in their
memory base register that they are prefetchable. Bridges can optionally support these devices
when they are downstream of the bridge by implementing the prefetchable memory space
registers including the Prefetchable Base Upper 32-bits and Prefetchable Limit Upper 32-bits
registers. In this case, inverse decoding is used by the bridge to determine when to forward Dual
Address Cycles upstream.

Figure 4-4 shows how Dual Address Cycle transactions will be forwarded by the bridge from the
primary interface to the secondary interface when they are in the 64-bit prefetchable memory
address range (when the base is less than or equal to the limit). Dual Address Cycle transactions
will be forwarded by the bridge from the secondary interface to the primary interface when the
address is outside the range defined by the prefetchable memory base and limit address registers.

Revision 1.1

65

3ULPDU\
,QWHUIDFH

6HFRQGDU\
,QWHUIDFH

3UHIHWFKDEOH�0HPRU\

��*E\WH
ERXQGDU\

0HPRU\�0DSSHG�,�2

��*E\WH
ERXQGDU\

Figure 4-4: 64-bit Prefetchable Memory Address Range Example

4.4.2. 64-bit Address Decoding of Prefetchable Memory

If a bridge implements 64-bit addressing for prefetchable memory on the secondary interface of
the bridge (the Prefetchable Base Upper 32-bits and Prefetchable Limit Upper 32-bits registers
are implemented), three different mappings of the prefetchable memory address range are
possible.

1. The entire prefetchable memory range resides below the 4 GB address boundary.

2. The entire prefetchable memory range resides above the 4 GB address boundary.

3. The prefetchable memory range straddles the 4 GB boundary.

The 64-bit address decoding behavior of the bridge for each of these possible mappings is
described in the following sections.

Revision 1.1

66

4.4.2.1. Below the 4 GB Boundary

If the entire prefetchable memory address range on the secondary interface resides below the
4 GB address boundary, the Prefetchable Base Upper 32-bits and Prefetchable Limit Upper 32-
bits registers must be programmed to be zero. The bridge will ignore all DAC commands on the
primary interface, since there are no 64-bit addresses behind the bridge. The address of single
address cycles are checked to see if they are equal to or greater than the base address specified in
the Prefetchable Memory Base Address register (the low 32-bits of the base address) and less
than or equal to the limit address specified in the Prefetchable Memory Limit Address register
(the low 32-bits of the limit address). If both address comparisons are true, the bridge claims the
access and passes it to the secondary bus. In this case, the Prefetchable Base Upper 32-bits and
Prefetchable Limit Upper 32-bits registers are not used in the decode.

4.4.2.2. Above the 4 GB Boundary

If the entire prefetchable memory address range on the secondary interface resides above the
4 GB address boundary, the Prefetchable Base Upper 32-bits and Prefetchable Limit Upper 32-
bits registers must be programmed with non-zero values. Therefore, the bridge will ignore SAC
transactions and only decode DAC commands initiated on the primary interface that are in the
prefetchable range, since the range of interest cannot be accessed with a SAC. The addresses of
DAC commands are checked to see if they are equal to or greater than the 64-bit prefetchable
base address and less than or equal to the 64-bit prefetchable limit address. The 64-bit
prefetchable base address is specified by the Prefetchable Base Upper 32-bits register and the
Prefetchable Memory Base register. The 64-bit prefetchable limit address is specified by the
Prefetchable Limit Upper 32-bits register and the Prefetchable Memory Limit register. If both
address comparisons are true, the bridge claims the access and passes it to the secondary bus.

4.4.2.3. Across the 4 GB Boundary

If the prefetchable memory address range on the secondary interface straddles the 4 GB address
boundary, the Prefetchable Base Upper 32-bits register must be programmed to zero and
Prefetchable Limit Upper 32-bits registers must be programmed to a non-zero value. The bridge
must decode the address of both SAC and DAC transactions to determine if the access is to be
claimed and forwarded to the secondary bus.

The address of a SAC transaction is compared only to the Prefetchable Memory Base register, if
the Prefetchable Base Upper 32-bits register is zero. If the 32-bit address of a SAC transaction is
equal to or greater than the Prefetchable Memory Base register, the access is claimed by the
bridge and forwarded to the secondary bus.

The first address of a DAC transaction is compared to the Prefetchable Memory Limit register
and the second address of a DAC transaction is compared to the Prefetchable Limit Upper 32-
bits register. If the 64-bit address is less than or equal to the 64-bit prefetchable memory limit
address, the access is claimed by the bridge and forwarded to the secondary bus.

Revision 1.1

67

4.5. VGA Support

There are two issues related to the support of VGA compatible devices in systems with bridges:
VGA compatible addressing and VGA palette snooping. Bridges are not required to implement
the VGA support mechanisms described in the following sections. However, if a bridge
implements the support mechanisms for VGA compatible addressing, it must also implement the
mechanisms for VGA palette snooping and vice versa.

If VGA support is implemented by a bridge, the bridge must have the capability to be configured
to recognize the ISA compatible addresses used by VGA devices, so it can support a VGA
device downstream of the bridge. A bridge must also support configurations where a graphics
device downstream of a bridge needs to snoop VGA palette accesses if VGA support is
implemented.

4.5.1. VGA Compatible Addressing

The VGA Enable bit in the Bridge Control register is used to control response by the bridge to
both the VGA frame buffer addresses and to the VGA register addresses. If a VGA compatible
device is located downstream of a bridge, the VGA Enable bit must be set. If the VGA Enable
bit is set, the bridge will positively decode and forward memory accesses to VGA frame buffer
addresses and I/O accesses to VGA registers from the primary interface to the secondary
interface (and block forwarding from the secondary to primary interface of these same accesses).
A bridge never forwards transactions that access VGA BIOS memory addresses (regardless of
the setting of the VGA Enable bit). ROM code provided by PCI compatible devices must be
copied to system memory before execution and may be mapped to any address in PCI memory
address space via the Expansion ROM Base Address register in the device’s configuration
header.

VGA memory addresses

• 0A 0000h through 0B FFFFh

 VGA I/O addresses (including ISA aliases - AD[15::10] are not decoded)

• AD[9::0] = 3B0h through 3BBh, and 3C0h through 3DFh

 4.5.2. VGA Palette Snooping

 The behavior of each display device and each bridge in the path of a palette access must be
selected based on the configuration of the system. The palette snooping behavior of bridges is
described below. For more tutorial information, see Section 12.1.2.

Revision 1.1

68

 A bridge that implements VGA support must provide the following three modes of VGA palette
access:

• Ignore VGA palette accesses

 if there are no graphics agents downstream that need to snoop or respond to VGA palette
access cycles (reads or writes)

• Positively decode and forward VGA palette writes

if there are graphics agents downstream of the bridge that need to respond or snoop palette
writes (reads are ignored)

• Positively decode and forward VGA palette reads and writes

 if there are VGA compatible graphics agents that are downstream of the bridge

The VGA Enable bit in the Bridge Control register and the VGA Snoop Enable bit in the
Command register select the bridge’s response to palette accesses as shown in Table 4-1.

 Table 4-1: Response to VGA Palette Accesses

 VGA Enable VGA Snoop Enable Bridge Response to Palette Accesses

 0 0 Ignore all palette accesses

 0 1 Positively decode palette writes (ignore reads)

 1 x Positively decode palette reads and writes

 The VGA palette addresses are as follows (inclusive of ISA aliases - AD[15::10] are not
decoded):

• AD[9::0] = 3C6h, 3C8h, and 3C9h

4.6. Subtractive Decode Support

A unique class code of 060401h has been assigned to bridges that support subtractive decoding.
See the PCI Local Bus Specification for the device selection requirements of a subtractive
decoding device. The purpose of the subtractive decoding class code is to let configuration
software know the bridge supports subtractive decoding and, therefore, may have subtractive
decoding devices on the secondary bus. The only unique feature indicated by class code
060401h is the support of subtractive decoding in addition to all the other requirements of this
specification. No other functional characteristics should be assumed of bridges that have a
060401h class code. A complete description of system features associated with a subtractive
decoding bridge is beyond the scope of this specification.

Revision 1.1

69

Chapter 5
Buffer Management

5.1. Prefetching Read Data

The term prefetch is used when the bridge reads data from the target in anticipation that the
master will consume it. Prefetching is a useful technique for hiding the latency of a burst read
transaction but its use is restricted. Memory that is prefetchable has the attribute that it returns
the same data when read multiple times and does not alter any other device state when it is read 3.
When prefetching, the bridge may read data that is not consumed by the master. The bridge is
required to discard any prefetched read data not consumed when the master concludes the read
transaction (refer to Section 5.6.2.).

The PCI Local Bus Specification specifies that a bridge may safely prefetch data when the
transaction uses the Memory Read Line or Memory Read Multiple command. Since most
processor architectures do not have the notion of prefetchable memory, typical host bus bridges
do not generate Memory Read Line or Memory Read Multiple transactions. A bridge may
provide an optional address range that allows the bridge to prefetch memory read data from a
target attached to the secondary interface of the bridge. A target explicitly indicates to
configuration software that a memory address range is prefetchable by setting the Prefetchable
bit (bit 3) in the corresponding Base Address Register (BAR) within the target’s Configuration
Space header. Configuration software uses this information to program the prefetchable memory
address range in the bridge and to map the prefetchable address ranges of secondary bus targets
into the range. If a master on the primary interface of a bridge accesses a location mapped in the
prefetchable memory address range, the bridge is permitted to prefetch read data when
completing the transaction on the secondary bus. In this case, the bridge is permitted either to
extend the read transaction burst length or to modify the bus command to Memory Read Line or
Memory Read Multiple or both. This function is supported only if the optional Prefetchable
Memory Base and Limit registers are implemented.

A bridge is also permitted to prefetch data from a secondary bus if the transaction originates on
the primary bus and is either a Memory Read Line or Memory Read Multiple command. A

3 In a prior revision of this specification, a PCI-PCI bridge was not permitted to prefetch read data across a 4 KB
boundary. However, this restriction has been removed by this specification revision. It is the responsibility of the
target device to disconnect a burst transaction when either a BAR boundary is reached, or a boundary is reached
within a BAR where the attributes of the access change (i.e., prefetchable vs. non-prefetchable).

Revision 1.1

70

bridge is permitted to prefetch data from the primary bus if the transaction originates on the
secondary bus and is either a Memory Read Line or Memory Read Multiple command. Masters
attached to the secondary interface of a PCI-to-PCI bridge are encouraged to use the Memory
Read Line or Memory Read Multiple commands if they desire high performance (prefetchable)
read transactions. The bridge is also permitted to assume that all transactions that originate on
the secondary bus and go up through the bridge have a final destination at main memory and
therefore are prefetchable. If a bridge makes this assumption and does blind prefetching on the
Memory Read command, it must support a device-specific bit (in Configuration Space) that
allows this feature to be disabled (if blind prefetching causes a problem). When prefetching
memory read data, the bridge is permitted to assert all byte enables for all data phases on the
destination bus independent of the byte enables used by the originating bus master.

Table 5-1 lists when prefetching by the bridge is permitted for those bus commands that function
like a read transaction (i.e., the master is reading data from the target device). Prefetching does
not apply for those bus commands where the master writes data to the target device, the Dual
Address Command encoding, or for reserved bus command encodings.

Table 5-1: Read Prefetch Summary

C/BE[3::0]# Command type

Access Originates on the:

Primary Bus Secondary Bus

0010 I/O Read No No

0110 Memory Read No (Note 1) No (Note 2)

1010 Configuration Read No No

1100 Memory Read Multiple Yes Yes

1110 Memory Read Line Yes Yes

Notes:

1. Yes when the address is in the prefetchable range as described by Prefetchable Memory Base
and Limit registers.

2. The bridge is permitted to treat this like Memory Read Line or Memory Read Multiple, but
this feature must be able to be turned off via a device-specific bit.

Prefetching of read data is never allowed in the PCI I/O Space or Configuration Space.

Revision 1.1

71

5.2. Posting Write Data

Posting of write data is required by the PCI Local Bus Specification if either Memory Write or
Memory Write and Invalidate commands are used for transactions that cross the bridge in either
direction and the bridge has posting buffer space available. Posting of I/O Write and
Configuration Write transactions is not permitted by a bridge.

A PCI-to-PCI bridge is generally allowed to terminate with Retry a transaction that uses the
Memory Write or Memory Write and Invalidate commands only when its buffers are filled with
previously received memory write data or for a locked operation. Terminating a Memory Write
or Memory Write and Invalidate transaction with Retry for other reasons can lead to deadlocks.
Refer to Section 5.6.3. for more details.

5.2.1. Memory Write and Invalidate Usage

The PCI Local Bus Specification permits a master to use the Memory Write and Invalidate (MWI)
command to transfer memory write data when the following requirements are met:

• linear incrementing address mode is used

• the transaction begins on a cacheline aligned boundary

• the master guarantees that it will deliver all bytes within any cacheline accessed (in some cases
the transaction will be a burst transaction which accesses multiple cachelines)

When functioning as a bus master a bridge is permitted to use the MWI command when forwarding
transactions (upstream or downstream) in one of three cases:

• the bridge forwards an MWI transaction originated by another master

• the bridge promotes a Memory Write (MW) transaction (or portion of a MW transaction) to a
MWI transaction

• the bridge combines sequential MW transactions to generate a transaction that meets the MWI
usage requirements

Note that for each case there are requirements that qualify the bridges ability to use the MWI
command for the transaction. Each case is described in detail in the following sections.

5.2.1.1. Forwarding Memory Write and Invalidate Transactions

A bridge is permitted to forward a MWI transaction originated by another master to the opposite
interface as a MWI transaction when the following conditions are true:

• the bridge implements the Cacheline Size register (see Section 3.2.4.7.)

• the Cacheline Size register has been set to a value supported by the bridge

The bridge is not required to validate that the forwarded transaction meets the MWI usage
requirements (the originating master is responsible for meeting the MWI usage requirements). The
setting of the Memory Write and Invalidate bit in the Command register (see Section 3.2.4.3.) does

Revision 1.1

72

not affect the bridge’s ability to use the MWI command on the destination bus when forwarding a
MWI transaction originated by another master.

If the bridge does not implement the Cacheline Size register, or the Cacheline Size is not set to a
value supported by the bridge, then the bridge must change the MWI command to MW when
forwarding the transaction across the bridge4.

5.2.1.2. Promoting Memory Write Transactions

When forwarding a MW transaction, the bridge can optionally promote the transaction to a MWI
transaction if it meets the MWI usage rules. In this case, the bridge is required to validate that the
forwarded transaction meets all MWI usage requirements. To use this method, the bridge must
implement the Memory Write and Invalidate bit in the Command register (see Section 3.2.4.3.) and
the Cacheline Size register (see Section 3.2.4.7.). Additionally, the Memory Write and Invalidate bit
must be set to enable the bridge promote Memory Write transactions to MWI transactions.

A bridge is permitted to meet the MWI usage rules by promoting only a subset of a MW transaction.
For example, consider a MW burst transaction that begins and ends on address boundaries that are
not cacheline aligned but that contain one or more cachelines within the burst that have all bytes
enabled. When forwarding the MW transaction, the bridge is permitted to meet the MWI usage
requirements by segmenting the original MW transaction into three separate transactions on the
destination bus. The first transaction would use a MW transaction to transfer the memory write data
from the starting address (which is not cacheline aligned) up to the next aligned cacheline boundary.
The bridge would then use a MWI transaction to transfer the memory write data beginning on the
aligned cacheline boundary including all subsequent complete cachelines up to the final aligned
cacheline boundary contained in the original MW transaction. The bridge would then use a MW
transaction to transfer the remainder of the data contained in the original MW transaction. Note that
the bridge cannot alter the ordering of the original MW transaction. All bytes must be forwarded in
the order they were received in the original MW transaction.

5.2.1.3. Combining Memory Write Transactions

A bridge may optionally combine sequential Memory Write transactions (see Section 5.7.) to
generate a transaction that meets MWI usage requirements. In this case, the bridge is required to
validate that the forwarded transaction meets all MWI usage requirements. To use this method, the
bridge must implement the Memory Write and Invalidate bit in the Command register (see Section
3.2.4.3.) and the Cacheline Size register (see Section 3.2.4.7.). Additionally, the Memory Write and
Invalidate bit must be set to enable the bridge to combine Memory Write transactions into MWI
transactions. Note that the bridge cannot alter the ordering of the original MW transaction. All bytes
must be forwarded in the order they were received in the original MW transaction.

4 A valid Cacheline Size is necessary for the bridge to determine cacheline boundaries on the target
bus when the Master Latency Timer on the destination bus expires during the delivery of a MWI
transaction (see Sections 3.2.4.8. and 3.2.5.5.).

Revision 1.1

73

5.2.1.4. Memory Write and Invalidate Disconnects

The PCI Local Bus Specification permits a target to disconnect a Memory Write and Invalidate
transaction on an address that is not an aligned cacheline boundary. In this case, when the master
resumes delivery of the remaining write data for the cacheline in which the disconnect occurred, the
master must use a Memory Write transaction (the Memory Write and Invalidate usage requirements
are no longer valid). The following sections describe the requirements for delivering the remainder
of a MWI transaction for two cases of Target-Disconnect:

• the bridge disconnects the originating master on the originating bus

• the target disconnects the bridge on the destination

These two cases are discussed in the following sections.

5.2.1.4.1. Master Disconnected by the Bridge

When responding as a target, a bridge can disconnect a master during any data phase of a MWI
transaction (this may occur as the result of a temporary buffer full condition for example). The
bridge must use a MW transaction on the destination bus to deliver the write data for the incomplete
cacheline in which the disconnect occurred. The bridge is permitted to use the MWI command to
forward any cachelines posted by the bridge prior to signaling disconnect to the originating master
provided the requirements detailed in Section 5.2.1.1. are met.

5.2.1.4.2. Bridge Disconnected by the Target

When a bridge is disconnect by the target when forwarding a MWI transaction on an address
boundary that is not cacheline aligned, the bridge must use a MW transaction to deliver the
remaining write data for the cacheline in which the disconnect occurred. The bridge is permitted to
use the techniques described in Sections 5.2.1.2. and 5.2.1.3. to resume delivery of subsequent
cachelines with MWI transactions.

Revision 1.1

74

5.3. Delayed Transactions

The following discussion of Delayed Transactions is included to clarify their application to PCI-
to-PCI bridges. For a complete treatment of Delayed Transactions, refer to the PCI Local Bus
Specification.

Bridges must implement Delayed Transactions to meet the latency requirements of the PCI
Local Bus Specification. Delayed Transactions significantly improve the transfer efficiency of
PCI buses with as few as one bridge since the master is not held in wait states while the bridge
completes the transaction on the destination bus. Furthermore, Delayed Transactions allow more
combinations of transactions crossing the bridge in opposite directions to run concurrently than
would otherwise be possible thus avoiding potential starvation problems and improving
efficiency.

Only non-posted transactions can be completed as Delayed Transactions by a bridge. These
include I/O Read, I/O Write, Configuration Read, Configuration Write, Memory Read, Memory
Read Line, and Memory Read Multiple. Memory Write and Memory Write and Invalidate
transactions are postable and, therefore, cannot be completed as Delayed Transactions.

To complete a transaction using Delayed Transaction termination, a bridge must latch the
following information:

• address

• command

• byte enables

• address and data parity

• REQ64# (if a 64-bit transfer)

For write transactions completed using Delayed Transaction termination, a bridge must also latch
data from byte lanes for which the byte enable is asserted and may optionally latch data from
byte lanes for which the byte enable is deasserted. LOCK# must also be latched for transactions
flowing downstream. Refer to Section 5.4. for additional requirements when completing a
Delayed Transaction as part of a locked operation.

After latching the required information, the bridge terminates the transaction on the originating
bus with Retry. Once ordering requirements have been satisfied (see Section 5.5.), and the
arbiter has granted the destination bus to the bridge, the bridge begins the process of executing
the transaction on the destination bus. If the Delayed Request is a read, the bridge obtains the
requested data and completion status. If the Delayed Request is a write, the bridge delivers the
write data and obtains the completion status. Completing the Delayed Request on the destination
bus produces a Delayed Completion which consists of the latched information of the Delayed
Request and the completion status (and data if a read request). The bridge stores the Delayed
Completion until the master repeats the initial request.

7KH�EULGJH�GLIIHUHQWLDWHV�EHWZHHQ�WUDQVDFWLRQV��E\�WKH�VDPH�RU�GLIIHUHQW�PDVWHUV��E\�FRPSDULQJ
WKH�FXUUHQW�WUDQVDFWLRQ�ZLWK�LQIRUPDWLRQ�ODWFKHG�SUHYLRXVO\��IRU�ERWK�'HOD\HG�5HTXHVWV�DQG
'HOD\HG�&RPSOHWLRQV����:KHQ�WKH�3DULW\�(UURU�5HVSRQVH�ELW��ELW���RI�WKH�&RPPDQG�5HJLVWHU�IRU
WKH�SULPDU\�EXV�DQG�ELW���RI�WKH�%ULGJH�&RQWURO�UHJLVWHU�IRU�WKH�VHFRQGDU\�EXV��LV�FOHDUHG��WKH

Revision 1.1

75

EULGJH�LJQRUHV�WKH�DGGUHVV�DQG�GDWD�SDULW\�ODWFKHG�SUHYLRXVO\�ZKHQ�GRLQJ�WKH�FRPSDULVRQ���7KH
E\WH�HQDEOHV�PD\�RSWLRQDOO\�EH�LJQRUHG�LQ�WKH�FRPSDULVRQ�LI�WKH�PDVWHU�LV�UHDGLQJ�IURP�D
SUHIHWFKDEOH�ORFDWLRQ��HYHQ�WKRXJK�WKH�PDVWHU�LV�UHTXLUHG�WR�UHSHDW�WKH�WUDQVDFWLRQ�ZLWK�WKH�VDPH
E\WH�HQDEOHV���,I�WKH�FRPSDUH�PDWFKHV�D�'HOD\HG�5HTXHVW��DOUHDG\�HQTXHXHG���EXW�WKH�EULGJH�LV
QRW�UHDG\�WR�FRPSOHWH�WKH�UHTXHVW��WKH�EULGJH�GRHV�QRW�HQTXHXH�WKH�UHTXHVW�DJDLQ�EXW�VLPSO\
WHUPLQDWHV�WKH�WUDQVDFWLRQ�ZLWK�5HWU\���,I�WKH�FRPSDUH�PDWFKHV�D�'HOD\HG�&RPSOHWLRQ�DQG�WKH
EULGJH�LV�UHDG\�WR�FRPSOHWH�WKH�UHTXHVW��WKH�EULGJH�UHVSRQGV�E\�VLJQDOLQJ�WKH�VWDWXV�DQG�SURYLGHV
WKH�GDWD�LI�D�UHDG�WUDQVDFWLRQ�

The master must repeat the transaction exactly as the original request; otherwise, the bridge will
assume it is a new transaction (since the agent cannot distinguish masters). Two masters could
request the exact same transaction and the bridge cannot and need not distinguish between them
and will simply complete the Delayed Transaction with the first master to repeat the transaction
after the completion on the destination bus by the bridge.

A bridge is permitted to enqueue one or more Delayed Requests at a time. If a bridge enqueues
multiple Delayed Requests, the order in which it attempts them on the destination bus is
independent of the order in which they were originally attempted on the originating bus.
Furthermore, the order in which the transactions ultimately complete on the originating bus is
independent of the order in which they were attempted on either bus and the order in which they
completed on the secondary bus. (Refer to Section 5.5., for restrictions with respect to posted
memory writes.)

While completing a Delayed Request, the bridge may, from time to time, terminate a memory
write transaction with Retry while temporary internal conflicts are being resolved; for example,
when all the memory-write data buffers are full or during a locked transaction. However, the
bridge cannot require a Delayed Transaction to complete on the originating bus before accepting
the memory write data from a master on that bus; otherwise, a deadlock may occur.
Furthermore, the bridge cannot indefinitely terminate a memory write with Retry on one bus
because it is waiting to run a previously enqueued Delayed Request on the other bus, or because
it is waiting for a master to take a previously enqueued Delayed Completion on either bus. Refer
to Section 5.5. and Section 5.6.3. for more details.

5.3.1. Discarding a Delayed Request

Since a Delayed Request is only a request and not really a transaction, the bridge is allowed to
discard a Delayed Request from the time it is enqueued until it has been attempted on the
destination bus. Once a request has been attempted on the destination bus, it must continue to be
repeated until it completes on the destination bus and cannot be discarded. The bridge is allowed
to present other requests. But if it attempts more than one request, the bridge must continue to
repeat all requests that have been attempted unconditionally until they complete. The repeating
of the requests is not required to be equal, but is required to be fair.

The bridge is allowed to discard Delayed Completions in only two cases. The first case is if the
Delayed Completion is a read of a prefetchable region (or the command was Memory Read Line
or Memory Read Multiple). The second case is for all Delayed Completions (read or write,
prefetchable or not) if the master has not repeated the request before the Discard Timer interval
is exceeded. When this occurs, the device is required to discard the Delayed Completion;
otherwise, a deadlock may occur.

Revision 1.1

76

5.3.2. Discarding a Delayed Completion

The Discard Timer for masters on the primary bus is selectable to expire either within 2 15 clocks

or 210 clocks depending on the state of bit 8 in the Bridge Control register. The Discard Timer
for masters on the secondary bus is similarly controlled by bit 9 in the Bridge Control register.
The longer value is the default and should be adequate for most systems. However, some classes
of devices designed before Delayed Transactions were introduced into the PCI Local Bus
Specification may encounter situations in which a transaction terminated with Retry is not
repeated. If this situation occurs frequently enough that the longer Discard Timer value causes a
performance problem, then the shorter time can be selected. When the Discard Timer interval is
exceeded on either the primary interface or the secondary interface, the bridge must set the
Discard Timer Status bit (bit 10) in the Bridge Control register. In addition, the bridge must
assert SERR# on the primary interface if enabled to do so by the Discard Timer SERR# Enable
bit (bit 11) in the Bridge Control register and the SERR# Enable bit in the Command register.

While completing a Delayed Request, the bridge may, from time to time, terminate a memory
write transaction with Retry while temporary internal conflicts are being resolved; for example,
when all the memory-write data buffers are full or during a locked transaction. However, the
bridge cannot require a Delayed Transaction to complete on the originating bus before accepting
the memory write data from a master on that bus; otherwise, a deadlock may occur.
Furthermore, the bridge cannot indefinitely terminate a memory write with Retry on one bus
because it is waiting to run a previously enqueued Delayed Request on the other bus, or because
it is waiting for a master to take a previously enqueued Delayed Completion on either bus. Refer
to Section 5.5. and Section 5.6.3. for more details.

5.4. Exclusive Access Transactions

A PCI-to-PCI bridge is only allowed to propagate an exclusive access transaction from its
primary to its secondary interface and never allowed to initiate an exclusive access of its own
initiative. A PCI-to-PCI bridge is required to ignore LOCK# when acting as a target on its
secondary interface. A PCI-to-PCI bridge adheres to the LOCK# usage requirements defined in
the PCI Local Bus Specification. This section describes additional requirements for propagating
an exclusive access across a PCI-to-PCI bridge.

The first transaction of a lock operation must be a read transaction and is completed by the
bridge using Delayed Transaction termination. When a downstream read transaction with
LOCK# is successfully queued as a Delayed Request (Delayed Lock-Request) on the primary
interface, the bridge enters a target-lock state even though the master is terminated with Retry.
While in the target-lock state, the bridge terminates with Retry all transactions on the primary
interface.

When the downstream Delayed Lock-Request is queued on the primary interface, it is forwarded
to the secondary interface exactly the same as an unlocked Delayed Request (i.e., all ordering
rules are obeyed. See Section 5.5.). The bridge must follow the requirements for initiating an
exclusive access before attempting the Delayed Lock-Request.

Revision 1.1

77

5.4.1. Delayed Lock-Request Error

If the Delayed Lock-Request completes on the secondary interface with Master-Abort or Target-
Abort, the bridge has not successfully established exclusive access of the target device and does
not establish control of the secondary interface LOCK# resource. In this case, the bridge is
allowed to respond to subsequent upstream transactions normally (i.e., does not unconditionally
terminate with Retry upstream posted writes or upstream Delayed Transactions). When the
Delayed Lock-Request terminates with Master-Abort or Target-Abort on the secondary interface,
the error information is retained in the Delayed Lock-Completion that is produced.

The Delayed Lock-Completion is returned to the primary interface exactly the same as an
unlocked Delayed Completion (i.e., all ordering rules are obeyed; refer to Section 5.5.). When
the Delayed Lock-Completion is returned to the originating master, the bridge is required to
signal a Target-Abort to the originating master on the primary interface. When the bridge
signals Target-Abort to the originating master, the primary interface of the bridge transitions
from the target-lock state to an unlocked state (lock is not established). In this case, the master
has not successfully established exclusive access of the target device, and it does not establish
control of the primary interface LOCK# resource.

5.4.2. Normal Completion

If the Delayed Lock-Request completes without error on the secondary interface (normal
completion or disconnect), then the bridge has successfully established exclusive access of the
target device and ownership of the secondary interface LOCK# resource. The secondary
interface of the bridge enters a locked state, and the bridge must terminate with Retry all
subsequent upstream posted writes. The bridge may optionally terminate with Retry upstream
Delayed Transactions while the secondary interface is in the locked state.

The Delayed Lock-Completion is returned to the primary interface exactly the same as an
unlocked Delayed Completion (i.e., all ordering rules are obeyed). When the Delayed Lock-
Completion is returned to the originating master, the bridge signals normal completion
(including disconnect). At this point, the primary interface transitions from the target-lock state
to a full-lock state (lock is established across the bridge). In this case, the master has
successfully established exclusive access of the target device and ownership of the primary
interface LOCK# resource.

Once LOCK# is established between the originating master and the target device, both the
primary and secondary interfaces of the bridge remain in their locked states. Both interfaces
remain in the locked state until the originating master releases LOCK# ownership on the
primary interface. The originating master relinquishes LOCK# ownership when it completes the
desired sequence of exclusive operations or the bridge signals a Target-Abort to the master.
When lock ownership is relinquished by the originating master, the primary interface of the
bridge changes from the locked state to the unlocked state, the bridge relinquishes LOCK#
ownership on the secondary bus, and the secondary interface of the bridge changes from the
locked state to the unlocked state.

Revision 1.1

78

5.5. Ordering Requirements

Appendix E of the PCI Local Bus Specification specifies the ordering requirements for PCI-PCI
bridges. Sections of Appendix E are duplicated here for convenience. For a full discussion of
PCI ordering requirements, refer to the PCI Local Bus Specification.

Summary of PCI Ordering Requirements
Following is a summary of the general PCI ordering requirements presented in the PCI Local
Bus Specification.

General Requirements

1. The order of a transaction is determined when it completes. Transactions terminated with
Retry are only requests and can be handled by the bridge in any order.

2. Memory writes can be posted in both directions in a bridge. I/O and Configuration writes
are not posted. (I/O writes can be posted in the host bridge, but some restrictions apply.)
Read transactions (Memory, I/O, or Configuration) are not posted.

3. Posted memory writes moving in the same direction through a bridge will complete on the
destination bus in the same order they complete on the originating bus.

4. Write transactions crossing a bridge in opposite directions have no ordering relationship.

5. A read transaction must push ahead of it through the bridge any posted writes originating on
the same side of the bridge and posted before the read. Before the read transaction can
complete on its originating bus, it must pull out of the bridge any posted writes that
originated on the opposite side and were posted before the read command completes on the
read-destination bus.

6. A bridge can never make the acceptance (posting) of a memory write transaction as a target
contingent on the prior completion of a non-locked transaction as a master on the same bus.
Otherwise, a deadlock may occur. Bridges are allowed to refuse to accept a memory write
for temporary conditions which are guaranteed to be resolved with time. A bridge can make
the acceptance of a memory write transaction as a target contingent on the prior completion
of locked transaction as a master only if the bridge has already established a locked
operation with its intended target.

The following is a summary of the PCI ordering requirements specific to Delayed Transactions
presented in the PCI Local Bus Specification.

Delayed Transaction Requirements

1. A target that uses Delayed Transactions may be designed to have any number of Delayed
Transactions outstanding at one time.

2. Only non-posted transactions can be handled as Delayed Transactions.

3. A master must repeat any transaction terminated with Retry since the target may be using a
Delayed Transaction.

Revision 1.1

79

4. Once a Delayed Request has been attempted on the destination bus, it must continue to be
repeated until it completes on the destination bus. Before it is attempted on the destination
bus, it is only a request and may be discarded at anytime.

5. A Delayed Completion can only be discarded when it is a read from a prefetchable region, or

if the master has not repeated the transaction in 215 or 210 clocks.

6. A target must accept all memory writes addressed to it even while completing a request
using Delayed Transaction termination.

7. Delayed Requests and Delayed Completions have no ordering requirements with respect to
themselves.

8. Delayed Completions must be given an opportunity to pass Delayed Requests.

9. Only a Delayed Write Completion can pass a Posted Memory Write. A Posted Memory
Write must be given an opportunity to pass everything except another Posted Memory Write.

10. A single master may have any number of outstanding requests terminated with Retry.
However, if a master requires one transaction to be completed before another, it cannot
attempt the second one on PCI until the first one has completed.

Ordering of Requests
A transaction is considered to be a request when it is presented on the bus. When the transaction
is terminated with Retry, it is still considered a request. A transaction becomes complete or a
completion when data actually transfers (or is terminated with Master-Abort or Target-Abort).
The following discussion will refer to a transaction as being a request or completion depending
on the success of the transaction.

A transaction that is terminated with Retry has no ordering relationship with any other access.
Ordering of accesses is only determined when an access completes (transfers data). For
example, four masters A, B, C, and D reside on the same bus segment and all desire to generate
an access on the bus. For this example, each agent can only request a single transaction at a time
and will not request another until the current access completes. The order in which transactions
complete are based on the algorithm of the arbiter and the response of the target, not the order in
which each agent’s REQ# signal was asserted. Assuming that some requests are terminated
with Retry, the order in which they complete is independent of the order they were first
requested. By changing the arbiter’s algorithm, the completion of the transactions can be any
sequence (i.e., A, B, C, and then D or B, D, C, and then A, and so on). Because the arbiter can
change the order in which transactions are requested on the bus, and, therefore, the completion of
such transactions, the system is allowed to complete them in any order it desires. This means
that a request from any agent has no relationship with a request from any other agent. The only
exception to this rule is when LOCK# is used, which is described later.

Take the same four masters (A, B, C, and D) used in the previous paragraph and integrate them
onto a single piece of silicon (a multi-function device). For a multi-function device, the four
masters operate independent of each other, and each function only presents a single request on
the bus for this discussion. The order their requests complete is the same as if they where
separate agents and not a multi-function device, which is based on the arbitration algorithm.
Therefore, multiple requests from a single agent may complete in any order, since they have no
relationship to each other.

Revision 1.1

80

Another device, not a multi-function device, has multiple internal resources that can generate
transactions on the bus. If these different sources have some ordering relationship, then the
device must ensure that only a single request is presented on the bus at any one time. The agent
must not attempt a subsequent transaction until the previous transaction completes. For
example, a device has two transactions to complete on the bus, Transaction A and Transaction B
and A must complete before B to preserve internal ordering requirements. In this case, the
master cannot attempt B until A has completed.

The following example would produce inconsistent results if it were allowed to occur.
Transaction A is to a flag that covers data, and Transaction B accesses the actual data covered by
the flag. Transaction A is terminated with Retry, because the addressed target is currently busy
or resides behind a bridge. Transaction B is to a target that is ready and will complete the
request immediately. Consider what happens when these two transactions are allowed to
complete in the wrong order. If the master allows Transaction B to be presented on the bus after
Transaction A was terminated with Retry, Transaction B can complete before Transaction A. In
this case, the data may be accessed before it is actually valid. The responsibility to prevent this
from occurring rests with the master, which must block Transaction B from being attempted on
the bus until Transaction A completes. A master presenting multiple transactions on the bus
must ensure that subsequent requests (that have some relationship to a previous request) are not
presented on the bus until the previous request has completed. The system is allowed to
complete multiple requests from the same agent in any order. When a master allows multiple
requests to be presented on the bus without completing, it must repeat each request independent
of how any of the other requests complete.

Revision 1.1

81

Ordering of Delayed Transactions
A Delayed Transaction progresses to completion in three phases:

1. Request by the master

2. Completion of the request by the target

3. Completion of the transaction by the master

During the first phase, the master generates a transaction on the bus, the target decodes the
access, latches the information required to complete the access, and terminates the request with
Retry. The latched request information is referred to as a Delayed Request. During the second
phase, the target independently completes the request on the destination bus using the latched
information from the Delayed Request. The result of completing the Delayed Request on the
destination bus produces a Delayed Completion which consists of the latched information of the
Delayed Request and the completion status (and data if a read request). During the third phase,
the master successfully re-arbitrates for the bus and reissues the original request. The target
decodes the request and gives the master the completion status (and data if a read request). At
this point, the Delayed Completion is retired and the transaction has completed.

The number of simultaneous Delayed Transactions a bridge is capable of handling is limited by
the implementation and not by the architecture. Table 5-2 represents the ordering rules when a
bridge in the system is capable of allowing multiple transactions to proceed in each direction at
the same time. Each column of the table represents an access that was accepted by the bridge
earlier, while each row represents a transaction just accepted. The contents of the box indicate
what ordering relationship the second transaction must have to the first.

PMW - Posted Memory Write is a transaction that has completed on the originating bus before
completing on the destination bus and can only occur for Memory Write and Memory Write and
Invalidate commands.

DRR - Delayed Read Request is a transaction that must complete on the destination bus before
completing on the originating bus and can be an I/O Read, Configuration Read, Memory Read,
Memory Read Line, or Memory Read Multiple commands. As mentioned earlier, once a request
has been attempted on the destination bus, it must continue to be repeated until it completes on
the destination bus. Before it is attempted on the destination bus, the DRR is only a request and
may be discarded at any time to prevent deadlock or improve performance since the master must
repeat the request later.

DWR - Delayed Write Request is a transaction that must complete on the destination bus before
completing on the originating bus and can be an I/O Write or Configuration Write commands.
Note: Memory Write and Memory Write and Invalidate transactions must be posted (PMW) and
not be completed as DWR. As mentioned earlier, once a request has been attempted on the
destination bus, it must continue to be repeated until it completes. Before it is attempted on the
destination bus, the DWR is only a request and may be discarded at any time to prevent deadlock
or improve performance since the master must repeat the request later.

DRC - Delayed Read Completion is a transaction that has completed on the destination bus and
is now moving toward the originating bus to complete. The DRC contains the data requested by
the master and the completion status (normal, Master-Abort, Target-Abort, parity error, etc.).

Revision 1.1

82

DWC - Delayed Write Completion is a transaction that has completed on the destination bus and
is now moving toward the originating bus. The DWC does not contain the data of the access but
only status of how it completed (Normal, Master-Abort, Target-Abort, parity error, etc.). The
write data has been written to the specified target.

No - indicates that the subsequent transaction is not allowed to complete before the previous
transaction to preserve ordering in the system. The four No boxes found in column 2 prevent
PMW data from being passed by other accesses and thereby maintain a consistent view of data in
the system.

Yes - indicates that the subsequent transaction must be allowed to complete before the previous
one or a deadlock can occur.

When blocking occurs, the PMW is required to pass the DRC or the DWC. If the master
continues attempting to complete Delayed Requests, it must be fair in attempting to complete the
PMW. [DN]

Yes/No - indicates that the bridge designer may choose to allow the subsequent transaction to
complete before the previous transaction or not. This is allowed since there are no ordering
requirements to meet or deadlocks to avoid. How a bridge designer chooses to implement these
boxes may have a cost impact on the bridge implementation or performance impact on the
system.

Table 5-2: Ordering Rules for a Bridge

Row pass Col.?
PMW
(Col 2)

DRR
(Col 3)

DWR
(Col 4)

DRC
(Col 5)

DWC
(Col 6)

PMW (Row 1) No1 Yes5 Yes5 Yes7 Yes7

DRR (Row 2) No2 Yes/No Yes/No Yes/No Yes/No

DWR (Row 3) No3 Yes/No Yes/No Yes/No Yes/No

DRC (Row 4) No4 Yes6 Yes6 Yes/No Yes/No

DWC (Row 5) Yes/No Yes6 Yes6 Yes/No Yes/No

Rule 1 - A subsequent PMW cannot pass a previously accepted PMW. (Col 2, Row 1)

Posted Memory write transactions must complete in the order they are received. If the
subsequent write is to the flag that covers the data, the Consumer may use stale data if
write transactions are allowed to pass each other.

Rule 2 - A read transaction must push posted write data to maintain ordering. (Col 2, Row 2)

For example, a memory write to a location and followed by an immediate memory read
of the same location returns the new value (refer to the Special Considerations Section of
the PCI Local Bus Specification, for possible exceptions). Therefore, a memory read
cannot pass posted write data. An I/O read cannot pass a PMW, because the read may be
ensuring the write data arrives at the final destination.

Revision 1.1

83

Rule 3 - A non-postable write transaction must push posted write data to maintain ordering. (Col
2, Row 2)

A Delayed Write Request may be the flag that covers the data previously written
(PMW), and, therefore, the flag cannot pass the data that it potentially covers. (Col 2,
Row 3)

Rule 4 - A read transaction must pull write data back to the originating bus of the read
transaction. (Col 2, Row 4)

For example, the read of a status register of the device writing data to memory must not
complete before the data is pulled back to the originating bus. Otherwise, stale data may
be used.

Rule 5 - A Posted Memory Write must be allowed to pass a Delayed Request (read or write) to
avoid deadlocks. (Col 3 and Col 4, Row 1)

Referring to Figure 5-1, bridge Y (using Delayed Transactions) is between bridges X and
Z (designed to a previous version of this specification and not using Delayed
Transactions). Consider the following sequence of events:

• Master 1 initiates a read to Target 1 that is forwarded through bridge X and is
queued as a Delayed Request in bridge Y.

• Master 3 initiates a read to Target 3 that is forwarded through bridge Z and is queued
as a Delayed Request in bridge Y.

• After Masters 1 and 3 are terminated with Retry, Masters 2 and 4 begin long
memory write transactions addressing Targets 2 and 4 respectively, which are posted
in the write buffers of bridges X and Z respectively.

When bridge Y attempts to complete the read in either direction, bridges X and Z must
flush their posted write buffers before allowing the Read Request to pass through it. If
the posted write buffers of bridges X and Z are larger than those of bridge Y, bridge Y’s
buffers will fill. Bridge Y cannot discard the read request since it has been attempted,
and it cannot accept any more write data until the read in the opposite direction is
completed. Since this condition exists in both directions, neither DRR can complete
because the other is blocking the path. Therefore, the PMW data is required to pass the
DRR when the DRR blocks forward progress of PMW data.

The same condition exists when a DWR sits at the head of both queues, since some old
bridges also require the posting buffers to be flushed on a non-posted write cycle.

Rule 6 – Delayed Completion (read and write) must be allowed to pass Delayed Requests (read
or write) to avoid deadlocks. (Cols 3 and 4, Rows 4 and 5)

Consider an application where the common PCI bus segment is on the secondary bus of
bridge A and the primary bus for bridge B. If both bridges do not allow Delayed
Completions to pass the Delayed Requests, neither can make progress.

For example, suppose bridge A’s request to bridge B completes on bridge B’s secondary
bus, and bridge B’s request completes on bridge A’s primary bus. Bridge A’s
completion is now behind bridge B’s request and bridge B’s completion is behind bridge
A’s requests. Therefore, Delayed Completions must be allowed to pass Delayed
Requests.

Rule 7 - A Posted Memory Write must be allowed to pass a Delayed Completion (read or write)
to avoid deadlocks. (Col 5 and Col 6, Row 1)

Revision 1.1

84

Consider another transaction scenario similar to that for Rule 5 (again refer to Figure 5-
1). In this case, however, a DRC sits at the head of the queues in both directions of
bridge Y at the same time. Again the old bridges (X and Z) contain posted write data
from another master. The problem in this case, however, is that the read transaction
cannot be repeated until all the posted write data is flushed out of the old bridge and the
master is allowed to repeat its original request. Eventually, the new bridge cannot accept
any more posted data because its internal buffers are full, and it cannot drain them until
the DRC at the other end completes. When this condition exists in both directions,
neither DRC can complete, because the other is blocking the path. Therefore, the PMW
data is required to pass the DRC when the DRC blocks forward progress of PMW data.

The same condition exists when a DWC sits at the head of both queues.

Transactions that have no ordering constraints

Some Delayed Transactions (enqueued as Delayed Requests or Delayed Completions) have no
ordering relationship with any other Delayed Requests or Delayed Completions. For example,
the designer can (for performance or cost reasons) allow or disallow Delayed Requests to pass
other Delayed Requests and Delayed Completions that were previously enqueued.

Delayed Requests can pass other Delayed Requests (Cols 3 and 4, Rows 2 and 3).

Since Delayed Requests have no ordering relationship with other Delayed Requests,
these four boxes are don’t cares.

Delayed Requests can pass Delayed Completion (Col 5 and 6, Rows 2 and 3).

Since Delayed Requests have no ordering relationship with Delayed Completions, these
four boxes are don’t cares.

Delayed Completions can pass other Delayed Completion (Col 5 and 6, Rows 4 and 5).

Since Delayed Completions have no ordering relationship with other Delayed
Completions, these four boxes are don’t cares. Delayed Write Completions can pass
posted memory writes or be blocked by them (Col 2, Row 5)
If the DWC is allowed to pass a PMW or if it remains in the same order, there is no
deadlock or data inconsistencies in either case. The DWC data and the PMW data are
moving in opposite directions, initiated by masters residing on different buses accessing
targets on different buses.

PCI-PCI
Bridge Y

(pre 2.1)

Master 2

PCI Bus N

PCI-PCI
Bridge X

Master 1 Target 3

(Rev. 2.1)

Master 3

PCI Bus P

PCI-PCI
Bridge Z

Master 4Target 2

(pre 2.1)

Target 1

Target 4

Figure 5-1: Example System with PCI-to-PCI Bridges

Revision 1.1

85

Delayed Transactions and LOCK#
The bridge is required to support LOCK# when a transaction is initiated on its primary bus (and
is using the lock protocol), but is not required to support LOCK# on transactions that are
initiated on its secondary bus. If a locked transaction is initiated on the primary bus and the
bridge is the target, the bridge must adhere to the lock semantics defined by this specification.
The bridge is required to complete (push) all PMWs (accepted from the primary bus) onto the
secondary bus before attempting the lock on the secondary bus. The bridge may discard any
requests enqueued (but not yet attempted on the secondary bus), allow the locked transaction to
pass the enqueued requests, or simply complete all enqueued transactions before attempting the
locked transaction on the secondary interface. Once a locked transaction has been enqueued by
the bridge, the bridge cannot accept any other transaction from the primary interface until the
lock has completed except for a continuation of the lock itself by the lock master. Until the lock
is established on the secondary interface, the bridge is allowed to continue enqueuing
transactions from the secondary interface, but not the primary interface. Once lock has been
established on the secondary interface, the bridge cannot accept any posted write data moving
toward the primary interface until LOCK# has been released (FRAME# and LOCK# deasserted
on the same rising clock edge). (In the simplest implementation, the bridge does not accept any
other transactions in either direction once lock is established on the secondary bus except for
locked transactions from the lock master.) The bridge must complete previously enqueued
PMW, DRC, and DWC transactions moving toward the primary bus before allowing the locked
access to complete on the originating bus.

Error Conditions
A bridge is free to discard data or status of a transaction that was completed using Delayed

Transaction termination when the master has not repeated the request within 2 10 PCI clocks
(about 30 µs at 33 MHz). However, it is recommended that the bridge not discard the transaction

until 215 PCI clocks (about 983 µs at 33 MHz) after it acquired the data or status. The shorter
number is useful in system where a master designed to a previous version of this specification
frequently fails to repeat a transaction exactly as first requested. In this case, the bridge may be
programmed to discard the abandoned Delayed Completion early and allow other transactions to
proceed. Normally, however, the bridge would wait the longer time in case the repeat of the
transaction is being delayed by another bridge or bridges designed to a previous version of this
specification that did not support Delayed Transactions.

When this timer (referred to as the Discard Timer) expires, the device is required to discard the
data; otherwise, a deadlock may occur.

Note: When the transaction is discarded, data may be destroyed. This occurs
when the discarded Delayed Completion is a read to a non-prefetchable region.

When the Discard Timer expires, the device may choose to report or ignore the error. When the
data is prefetchable, it is recommended that the device ignore the error since system integrity is
not affected. However, when the data is not prefetchable, it is recommended that the device
report the error to its device driver since system integrity is affected. A bridge may assert
SERR# since it does not have a device driver.

Revision 1.1

86

Illustrations of the Use of the Ordering Rules
To illustrate the use of the ordering rules, consider the following examples. Each example shows
a sequence of transactions on each bus, with time advances from left to right. Generally no
attempt is made to align the time scale of the two buses:

$�%������&���'�(�)��������*�+�,�-��

���%���������'�����)�����������+�������

3ULPDU\

3&,�WR�3&,�%ULGJH

6HFRQGDU\

Figure 5-2: Transaction Ordering Example 1

In Figure 5-2, there are two streams of transactions, one on the primary bus and one on the
secondary bus. Transactions that originate on the primary bus are designated by letters and
complete in the sequence [A B C D E F G H I J]. Transactions that originate on the secondary
bus are designated by numbers, and complete in the sequence [1 2 3 4 5 6 7 8 9]. Arrows are
used to indicate that a transaction is forwarded from one bus to the other. The bridge forwards
transaction B, D, F, and H from the primary bus to the secondary bus and transactions 1, 2, 5, 7,
and 9 from the secondary bus to the primary bus. The resulting sequence on the primary bus is
[A B 1 2 C D E F 5 7 G H I J 9] while the sequence on the secondary bus is [B 1 2 3 4 D F 5 6 7
H 8 9]. Notice that in this example, the arrows never cross, which indicates that in this example,
the order of the transactions does not change independent of which bus the transaction initiates
on or targets.

3ULPDU\

3&,�WR�3&,�%ULGJH

6HFRQGDU\

$ %

�U �

�

�U�

�&U &

& �

' � �

�U �U � �

Figure 5-3: Transaction Ordering Example 2

To illustrate how the order of certain transactions can change when crossing a bridge, Figure 5-3
shows several Delayed Transactions. Initial enqueuing of the Delayed Request is designated in

Revision 1.1

87

italics with a small “r” and connected to the completed transaction on the destination bus with a
dotted line. This illustrates when the master first requested the transactions but was terminated
with Retry when the bridge enqueued the Delayed Request. As before, arrows indicate
transactions that cross the bridge and point toward the destination bus. The head of the arrows
shows when the transaction completed on the destination bus, and the tail of the arrow shows
when the transaction completed on the originating bus. Delayed Transactions 3 and C are
crossing the bridge in opposite directions. Although transactions C is terminated with Retry on
the primary bus and completes on the secondary bus before transaction 3, it does not complete on
the primary bus until after transaction 3. Similarly, Delayed Transactions crossing in the same
direction can be reordered. Transactions 4 and 5 complete on the primary bus in the same order
as they were terminated with Retry on the secondary bus, but they complete on the secondary
bus in the opposite order. This reordering can occur because it depends upon such things as PCI
bus arbitration sequence and timing of the master’s request to repeat the transaction on the
secondary bus relative to when it completed on the primary bus. In summary, the order in which
Delayed Transactions start and complete with respect to each other on either bus is irrelevant.

The relevant transaction ordering for a bridge involves posted memory write transactions. As
indicated in Table 5-2, the order relative to posted memory writes of most transactions moving in
either direction must be maintained by the bridge.

3ULPDU\

3&,�WR�3&,�%ULGJH

6HFRQGDU\

$ %

�

�

�

� &

$ �

'� �

&� ' � � () * +�

� � ()� * +

�

-

-

+U-U)U'U

�U

&U$U

�U �U

Figure 5-4: Transaction Ordering Example 3

 Figure 5-4 illustrates some of the ordering cases involving posted memory writes. Transactions
3, 4, 7, 8, E, and G are posted memory writes, and are shown with long-dashed lines. The
remaining transactions are all Delayed Transactions. Notice that posted memory write
transactions crossing the bridge in the same directions complete on both busses in the same
order, in this example [3 4 7 8] and [E G]. However, the order of a posted memory write with
respect to another posted memory write crossing the bridge in the opposite direction is not
important ([3 4 E 7 8 G] on primary side and [3 4 7 E 8 G] on secondary side).

No Delayed Request is allowed to pass a posted memory write going in the same direction, but
posted memory writes are allowed to pass Delayed Requests. Delayed Request Fr is enqueued
after posted memory write E and, therefore, Delayed Transaction F cannot complete on the
secondary bus until after posted memory write E. However, posted memory write G can
complete on the secondary bus before Delayed Transaction J, even though G completed on the
primary bus after Delayed Request Jr was enqueued.

Revision 1.1

88

Figure 5-4 also illustrates that no Delayed Completion is allowed to pass a posted memory write
going in the same direction, but posted memory writes are allowed to pass Delayed Completions.
Since Delayed Transaction C completed after posted memory write 4 on the secondary bus, the
Delayed Transaction cannot complete before the write on the primary bus. But even though
posted memory write 8 completed on the secondary bus after Delayed Transaction F, the write
can complete before the Delayed Transaction on the primary bus.

Besides maintaining a consistent view of write data, the ordering rules also avoid deadlocks.
Unless a locked sequence is in progress, in general, the bridge must accept a posted memory
write transaction addressing a target across the bridge, regardless of what other transactions
preceded it on either side. The only exception is for temporary conditions like emptying the
buffer of previous posted memory writes. The bridge may not continually terminate a memory
write transaction with Retry while waiting for a non-locked transaction to complete in either
direction.

5.6. Special Design Considerations

5.6.1. Read Starvation

Bridges designed to an earlier version of this specification do not implement Delayed
Transactions, and typically do not meet the latency requirements of the PCI Local Bus
Specification and can in normal operation starve masters on one side of the bus from fair access
to the other side.

Consider, for example, the case where a single master on the secondary bus is executing a long
string of write transactions addressing main memory, and during this time the CPU attempts to
read from a target on the secondary bus. Since there are no other masters on the secondary bus,
the writing master will quickly acquire the bus and post the first write transaction in the bridge.
While the bridge is waiting to acquire the primary bus, the CPU is granted the bus and attempts
to read from the secondary target. The ordering rules require the bridge to empty its posting
buffer before allowing a read to complete, so it must Retry the CPU read. If the bridge does not
implement Delayed Transactions, this CPU read is not enqueued and has made no forward
progress through the bridge. When the bridge acquires the bus, it will execute its write and
empty its posting buffer.

Since there are no other masters on the secondary bus in this example, it is quite possible for the
same writing master to reacquire the secondary bus and refill the bridge’s posting buffer before
the CPU has a chance to repeat its read transaction. If this happens, then the sequence will
repeat, starving the CPU until the master eventually finishes all of its write operations. Note that
in some applications, such as a live video frame grabber, the write stream never stops.

This condition is avoided if the bridge executes the CPU read as a Delayed Transaction. In this
case, when the CPU read is terminated with Retry, the bridge would enqueue a Delayed Read
Request. If the secondary arbiter treats this request fairly with respect to secondary master
requests for the bus, the CPU read would execute to completion on the secondary bus in between
master writes to the bridge, even though the CPU had been terminated with Retry on the primary
bus. The read data is then inserted between data of the write stream. The read data then reaches
the primary bus where it is held until the CPU repeats the request. To complete the read

Revision 1.1

89

transaction the CPU need only reacquire the primary bus and repeat the transaction some time
after the read data reaches the primary bus queue. Write data enqueued after the read data is
accepted is allowed to pass the read completion if blocking occurs to avoid a deadlock.

5.6.2. Stale Data

It is the responsibility of the bridge to guarantee that any data provided to a master be current as
of the time the master first attempted the read transaction. In general, this means that the bridge
must discard the balance of any data prefetched on behalf of a master, but not taken when the
master completed the transaction.

Implementation Note: Stale-Data Problems Caused by Not Discarding
Prefetch Data

Suppose a CPU has two buffers in adjacent main memory locations. The CPU prepares a
message for a bus master in the first buffer and then signals the bus master to pick up the
message. When the bus master reads its message, a bridge between the bus master and main
memory prefetches subsequent addresses including the second buffer location.

Sometime later, the CPU prepares a second message using the second buffer in main memory
and signals the bus master to come and get it. If the intervening bridge has not flushed the
balance of the previous prefetch, then when the master attempts to read the second buffer, the
bridge may deliver stale data.

Similarly, if a device were to poll a location behind a bridge and the bridge did not flush the
buffer after each read by the device, the device would never observe a new value for the polled
location

The Special Design Considerations section of the PCI Local Bus Specification, describes another
situation in which a master might see stale data. If two masters are polling the same location
using the same address, command, and byte enables, and one of the masters also writes to the
location, the next read by the writing master may read the value before the write rather than after
it. This same problem can occur if the two masters are not sharing the same location, but use the
same address, command, and byte enables, because one of the masters starts reading at a smaller
address than the one it actually wants.

Since the bridge, in general, has no knowledge of which master actually is making the request,
the bridge has no alternative but to supply the read completion data to the first master to repeat
the identical read transaction. Although it is difficult to envision a real application that would
behave this way, if one exists, then it is that application designer’s responsibility to avoid the
problem by doing a dummy read of the location or device after writing to it.

5.6.3. Deadlocks

The PCI ordering rules permit memory write transactions to be posted anywhere in the system,
and require that from time to time those posted writes must be flushed before other transactions
are allowed to complete so that all masters in the system will have a consistent view of data. As
a result, deadlocks can occur in numerous cases if targets do not follow the ordering rules for
accepting posted memory writes. In almost all cases, it is required that a target (including a

Revision 1.1

90

bridge) accept a posted memory write addressed to it regardless of what other non-locked
transactions may have preceded it. The only exception is for conditions that are guaranteed to be
resolved over time; for example, while all buffers are filled with previous posted memory write
transactions.

For example, suppose there are two bridges connected hierarchically, with Master A and Target
1 at the top, and Master B and Target 2 at the bottom as shown in Figure 5-5. Further suppose
that Master A executes a memory write to Target 2, which is posted in the upper bridge, and
Master B executes a read from Target 1, which crosses the lower bridge and appears at the
secondary interface of the upper bridge. To satisfy the ordering rules listed above, bridge X
must first empty the posted memory write addressed to Target 2 before it can complete the read
from Target 1 on PCI Bus P. Bridge Z is required to accept this posted memory write even if the
read transaction has already been attempted and terminated with Retry on bridge Z’s upper bus
(the PCI bus connecting bridges X and Z). This is true regardless of whether the read is executed
as a Delayed Transaction or not. If the lower bridge were to require its read to complete before
accepting the posted memory write, the system would deadlock. The PCI Local Bus
Specification, Appendix E includes other examples of deadlocks which can occur if targets
(including bridges) don’t accept posted memory writes.

Master A

PCI Bus P

PCI-PCI

Target 1

Target 2

PCI Bus N

PCI-PCI

Bridge X

Master B

Bridge Z

Figure 5-5: Deadlock Example

Revision 1.1

91

5.7. Combining Separate Writes Into a Single Burst Transaction

When a bridge forwards memory writes in either the memory mapped I/O or prefetchable
memory address ranges, it is allowed to combine separate but sequential 5 memory writes into a
single burst transfer (using linear increment addressing) provided the implied ordering is not
changed. For example, separate writes to Dword 1, 2, and 4 can be combined and forwarded as a
single burst (where the byte enables for Dword 3 are deasserted). However, separate writes to
Dword 4, 3, and 1 cannot be combined into a burst but must be forwarded as three separate
transactions in the same order as they were received.

Combining of I/O writes or configuration writes by a bridge is not allowed. Combining of
memory writes by a bridge is optional. See the PCI Local Bus Specification for additional
information on write combining.

5.8. Merging Separate Writes Into a Single Transaction

When a bridge forwards memory writes in a prefetchable memory address range, it is allowed to
merge separate but sequential masked writes to one Dword address into a single data phase
transfer, provided any byte location is written only once. For example, consider a sequence of
separate byte writes to bytes 3, 1, 0, and 2 of a Dword. A bridge is allowed to merge these writes
and forward them as a single write transaction. However, if the write sequence is byte 1, 1, 2,
and 3, then the first write to byte 1 must be forwarded as a separate write transaction. The
remaining byte writes could be forwarded as a single write with byte enables 1, 2, and 3 asserted
and byte enable 0 deasserted.

Merging of I/O writes, configuration writes, or memory writes in the memory mapped I/O
address range by a bridge is not allowed. Merging of memory writes in the prefetchable memory
range by a bridge is optional. See the PCI Local Bus Specification for additional information on
write merging.

5.9. Collapsing of Writes

When a bridge forwards write transactions, it cannot collapse sequential writes to the same
address into a single transfer. Two sequential write transactions to the same address in which at
least one byte enable has been asserted in both transactions must be forwarded as separate write
transactions by a bridge.

Collapsing of writes of any type by a bridge is not allowed. See the PCI Local Bus Specification
for additional information on write collapsing.

5The term sequential is used to indicate that the events (PCI transactions) occur in the order indicated
without any other intervening transactions.

Revision 1.1

92

Revision 1.1

93

Chapter 6
Error Support

6.1. Introduction

There are many types of errors that a PCI-to-PCI bridge can detect or report. Possible errors
include:

• Address parity errors

• Data parity errors

• Master-Aborts

• Target-Aborts

• Discard Timer timeout errors (when Delayed Transactions are supported)

• Secondary interface SERR# assertions (by other devices)

 A bridge will respond as a target to a PCI transaction on its primary interface when its
configuration registers, expansion ROM (if supported), or internal registers mapped by its Base
Address Registers (if supported) are accessed. When the bridge itself is the target of a
transaction (it is not forwarding a transaction), its error behavior must comply with the
requirements of the PCI Local Bus Specification.

 A bridge will also respond as a intermediate target when forwarding a transaction to its opposite
PCI interface. Similarly, a bridge will operate as an intermediate master when it is forwarding a
transaction from its opposite interface. The presence of a bridge in the path between the
originating master and ultimate target of a PCI transaction must be transparent whenever
possible. As a result, bridges attempt to propagate errors between the originating master and
ultimate target so that the errors are seen by both. However, for some error conditions it is not
possible for a bridge to be transparent. In these cases, the error handling requirements enable
recovery at the lowest level possible as outlined in the PCI Local Bus Specification. Some errors
force a bridge to exhibit non-transparent behavior in order to preclude more severe problems
such as live-lock or deadlock conditions.

Revision 1.1

94

 A PCI-to PCI bridge has two PCI interfaces and, therefore, additional sets of control and status
bits are needed for the secondary interface. The following configuration register bits affect the
error behavior of a bridge:

 Command Register (configuration register offset 04h)

• Parity Error Response bit (bit 6) – enables parity error detection on the primary interface

• SERR# Enable bit (bit 8) – enables assertion of SERR# on the primary interface

 Bridge Control Register (configuration register offset 3Ch)

• Parity Error Response bit (bit 0) – enables parity error detection on the secondary interface

• SERR# Enable bit (bit 1) – enables forwarding of SERR# from the secondary to the primary
interface

• Discard Timer SERR# Enable bit (bit 11) – enables assertion of SERR# on the primary
interface when a discard timer error occurs

• Primary Discard Timer bit (bit 8) – selects the number of PCI clocks that the bridge will wait
for a master on the primary interface to repeat a Delayed Transaction request

• Secondary Discard Timer bit (bit 9) - selects the number of PCI clocks that the bridge will
wait for a master on the secondary interface to repeat a Delayed Transaction request

 A bridge uses the following configuration register bits to report error status:

 Status Register (configuration register offset 06h)

• Master Data Parity Error bit (bit 8) – reports the detection of a data parity error while the
bridge is the master of a transaction on the primary interface of the bridge

• Signaled System Error bit (bit 14) – reports the assertion of the primary interface SERR# by
the bridge

• Detected Parity Error bit (bit 15) – reports the detection of a parity error on the primary
interface of the bridge

 Secondary Status Register (configuration register offset 1Eh)

• Master Data Parity Error bit (bit 8) – reports the detection of a data parity error while the
bridge is a master of a transaction on the secondary interface of the bridge

• Received System Error bit (bit 14) – reports the detection of an SERR# assertion on the
secondary interface of the bridge

• Detected Parity Error bit (bit 15) – reports the detection of a parity error on the secondary
interface of the bridge

 Bridge Control Register (configuration register offset 3Ch)

• Discard Timer Status bit (bit 10) - reports the discard of a Delayed Transaction from a queue
in the bridge as a result of the expiration of either the Primary Discard Timer or the
Secondary Discard Timer

Revision 1.1

95

 6.2. Parity Errors

 The PCI Local Bus Specification specifies the requirements for parity generation, detection, and
reporting. Because a bridge has two interfaces, and forwards transactions from one interface to
the other, additional requirements specific to a bridge are necessary. A bridge is required to
implement parity generation and parity error detection on both interfaces. The parity error
handling methods used by a bridge vary depending on the type of transaction during which the
error occurs, the settings of the various error control bits (listed in Section 6.1.), and the
transaction completion method used by the bridge (Delayed Transaction or immediate
completion). The following sections describe the required behavior of a bridge for address and
data parity errors. In some error cases, different behaviors are permitted, and the bridge designer
is free to choose one of the specified options.

 For correct parity error handling both the primary and secondary interfaces of the bridge must be
configured consistently. If the Parity Error Response bit in the Command register (corresponds
to the primary interface) is set, then the Parity Error Response bit in the Bridge Control register
(corresponds to the secondary interface) must also be set. Conversely, if the Parity Error
Response bit in the Command register is cleared, then the Parity Error Response bit in the Bridge
Control register must also be cleared. Some errors will not be reported if the various SERR#
enable bits are not set even if the Parity Error Response bits are both set.

 6.2.1. Address Parity Errors

 The bridge must detect address parity errors for all transactions on either interface. The response
to address parity errors by a bridge is controlled by the Parity Error Response bits in the
Command register and the Bridge Control register. During the address phase of a transaction, all
PCI agents decode the address and command to determine if they should respond to the
transaction by asserting DEVSEL#. When a target determines that it should respond to a
transaction, is enabled to respond to parity errors, and detects an address parity error, the PCI
Local Bus Specification allows the target to use one of the following transaction termination
methods:

• claim the transaction (by asserting DEVSEL#) and terminate it as though the address was
correct

• claim the transaction (by asserting DEVSEL#) and terminate it with a Target-Abort

• not claim the transaction (by not asserting DEVSEL#) and letting it terminate with a Master-
Abort

 Any of these transaction termination methods are allowed for a bridge when an address parity
error occurs. A bridge is not allowed to terminate a transaction with Retry solely because an
address parity error was detected.

 When the bridge detects an address parity error on its primary interface it must:

• assert SERR# on the primary interface (if enabled to do so by the SERR# Enable bit and the
Parity Error Response Enable bit in the Command register)

• set the Signaled SERR# bit in the Status register (if SERR# assertion was enabled)

Revision 1.1

96

• set the Detected Parity Error bit in the Status register (independent of the setting of the Parity
Error Response Enable bit in the Command register)

• if the bridge claims the transaction by asserting DEVSEL# and terminates it by signaling a
Target-Abort it must also set the Signaled Target-Abort bit in the Status register

 When the bridge detects an address parity error on its secondary PCI interface it must:

• assert SERR# on the primary interface (if enabled to do so by the SERR# Enable bit in the
Command register and the SERR# Enable and Parity Error Response Enable bits in the
Bridge Control register)

• set the Signaled SERR# bit in the Status register (if SERR# assertion was enabled)

• set the Detected Parity Error bit in the Secondary Status register (independent of the setting
of the Parity Error Response Enable bit in the Bridge Control register)

• if the bridge has claimed the cycle and terminates it by signaling a Target-Abort it must also
set the Signaled Target-Abort bit in the Secondary Status register

 6.2.2. Read Data Parity Errors

 During a read transaction, the target device sources the data, and parity is not valid until TRDY#
is asserted by the target device. As a result, a data parity error cannot occur during any attempt
(initial or subsequent) by the master that is terminated with Retry. A data parity error can occur
on the destination bus when read data is transferred from the target to the bridge (for subsequent
delivery to the originating master). A data parity error can also occur on the originating bus
when read data is transferred from the bridge to the originating master. The following sections
describe the error handling methods used by a bridge for each of these cases. These error
handling methods apply for all read transactions independent of the transaction completion
method (Delayed Transaction or immediate completion).

 6.2.2.1. Target Completion Error

 This section describes the data parity error handling method used by a bridge when a data parity
error occurs on the destination bus as read data is transferred from the target to the bridge (for
subsequent delivery to the originating master). A data parity error that occurs during a particular
data phase (or multiple data phases) of a burst read transaction on the destination bus must be
forwarded by the bridge to the originating bus in the same data phase (or data phases) in which it
occurred on the destination bus. The bridge must always forward the data and parity as read on
the destination bus to the master on the originating bus to allow the originating master to observe
the read data parity error condition. Note that the originating master will generally detect the
parity error when the read data is transferred to the master by the bridge during the master
completion phase (refer to Section 6.2.2.2.).

 If a data parity error occurs on the primary interface when the bridge is acting as a bus master
while forwarding a read transaction upstream, then the bridge must:

• assert PERR# on the primary bus (if enabled to do so by the Parity Error Response bit in the
Command register)

Revision 1.1

97

• set the Master Data Parity Error bit in the Status register (if the Parity Error Response bit in
the Command register is set)

 If a data parity error occurs on the secondary interface when the bridge is acting as a bus master
while forwarding a read transaction downstream, then the bridge must:

• assert PERR# on the secondary bus (if enabled to do so by the Parity Error Response bit in
the Bridge Control register)

• set the Master Data Parity Error bit in the Secondary Status register (if the Parity Error
Response bit in the Bridge Control register is set)

 The requirements to assert PERR# on the destination bus and to set the Master Data Parity Error
bit in the corresponding status register also apply to read data phases that are prefetched by the
bridge even if the originating master does not consume the read data on the originating bus.
However, the detection and reporting of a data parity error on the destination bus is independent
from the detection and reporting of the data parity error on the originating bus. If the originating
master resides on the primary interface, the error status bits in the Status register of the bridge
are not affected by errors that occurred during read data phases that were prefetched on the
secondary interface but were not subsequently consumed on the primary interface. If the
originating master resides on the secondary interface, the error status bits in the Secondary
Status register of the bridge are not affected by errors that occurred during read data phases that
were prefetched on the primary interface but were not subsequently consumed on the secondary
interface.

 6.2.2.2. Master Completion Error

 This section describes the data parity error handling method used by a bridge if an error occurs
on the originating bus when the read data is transferred from the bridge to the originating master.
A read data parity error can occur on the originating bus during transactions that access registers
internal to the bridge or during transactions that are forwarded from one PCI interface of the
bridge to the other. When the bridge forwards a transaction, data may transfer on the destination
bus with or without an error. If the read data is transferred on the destination bus without a data
parity error, an error may still be introduced on the originating bus.

 If a data parity error is detected by the originating master when data is read from the bridge
(either from an internal bridge register or from a buffer containing read data obtained from a read
transaction that was forwarded across the bridge), the master must assert PERR# if enabled to
do so by its Parity Error Response bit. The bridge takes no action and sets no status bits for such
an error.

 6.2.3. Non-Posted Write Data Parity Errors

 During a write transaction, the master sources the write data and must assert IRDY# when the
data is valid independent of the response by the target. Therefore, a data parity error can occur
during any attempt (initial or subsequent) by the originating master that is terminated with Retry.
A data parity error can also occur when a non-posted write transaction is completed on the
destination bus by the bridge. In addition, it is possible for a data parity error to be constant (i.e.,
the same error occurs each time the master repeats the transaction) or transient (i.e., the error

Revision 1.1

98

occurs on some but not other repetitions of the transaction by the master). The error handling
methods for a bridge are designed to detect and report both constant and transient data parity
errors during non-posted writes and to prevent transient data parity errors from causing a live-
lock or deadlock. The following sections describe the error handling methods used by a bridge
for each of these cases.

 6.2.3.1. Master Request Error

 If the bridge detects a data parity error when responding as a target on its primary interface to a
write transaction that would otherwise have been handled as a Delayed Transaction, the bridge
must do the following:

• Complete the data phase in which the error occurred by asserting TRDY#. If the master is
attempting a burst, the bridge must also assert STOP#.

• Report the error to the master by asserting PERR# (if enabled to do so by the Parity Error
Response bit in the Command register).

• Set the Detected Parity Error bit in the Status register.

• Discard the transaction. No Delayed Write Request is enqueued and no Delayed Write
Completion is retired.

 If the bridge detects a data parity error when responding as a target on its secondary interface to
a write transaction that would otherwise have been handled as a Delayed Transaction, the bridge
must do the following:

• Complete the data phase in which the error occurred by asserting TRDY#. If the master is
attempting a burst, the bridge must also assert STOP#.

• Report the error to the master by asserting PERR# (if enabled to do so by the Parity Error
Response bit in the Bridge Control register).

• Set the Detected Parity Error bit in the Secondary Status register.

• Discard the transaction. No Delayed Write Request is enqueued and no Delayed Write
Completion is retired.

 When parity error response is enabled, the bridge will only enqueue a Delayed Write Request
when a data parity error is not detected during the master request.

 6.2.3.2. Target Completion Error

 The bridge forwards a Delayed Write Request to the destination bus only if no error occurred
during the master request. However, a data parity error may occur when the transaction is
completed on the destination bus. In this case, the error is forwarded back to the originating
master during the Master Completion phase of the transaction.

Revision 1.1

99

 When a Delayed Write Request is forwarded upstream by the bridge to its primary interface, the
target of the transaction asserts PERR# if it detects a data parity error (and is enabled to report
parity errors). If PERR# is asserted by the target, then the bridge must:

• set the Master Data Parity Error bit in the Status register

• record the occurrence of the error in the corresponding Delayed Write Completion (produced
by completion of the Delayed Write Request)

 When the Delayed Write Completion is returned to the originating master on the secondary
interface of the bridge, the bridge must reflect the occurrence of the error from the destination
bus to the master by asserting PERR# (if enabled). The Detected Parity Error bit in the
Secondary Status register is not set.

 When a Delayed Write Request is forwarded downstream by the bridge to its secondary
interface, the target of the transaction asserts PERR# if it detects a data parity error (and is
enabled to report parity errors). If PERR# is asserted by the target, then the bridge must:

• set the Master Data Parity Error bit in the Secondary Status register

• record the occurrence of the error in the corresponding Delayed Write Completion (produced
by completion of the Delayed Write Request)

 When the Delayed Write Completion is returned to the originating master on the primary
interface of the bridge, the bridge must reflect the occurrence of the error from the destination
bus to the master by asserting PERR# (if enabled). The Detected Parity Error bit in the Status
register is not set.

 6.2.3.3. Master Completion Error

 If the bridge enqueues a Delayed Write Request and later detects a data parity error during a
subsequent repetition of the transaction by the originating master, the bridge terminates the
repeated transaction as if it were a new transaction as described in Section 6.2.3.1. The bridge
does not retire any Delayed Write Completions even if the transaction appears to match one
previously enqueued (it is impossible to determine whether the transaction really matches a
previously enqueued one since an error is present).

 If a constant data parity error is present on all subsequent reattempts of a previously enqueued
Delayed Write Request, then the bridge will eventually have an orphan Delayed Write
Completion (as a result of the initial Delayed Request). The orphan completion is discarded
when the discard timer expires (refer to Sections 5.3. and 6.5.). While waiting for the discard
timer to expire, the bridge may not be able to accept a new Delayed Transaction since it is not
required to handle multiple Delayed Transactions at the same time. However, since this
condition is temporary, a deadlock cannot occur. While in this condition, the bridge is required
to complete transactions that use Memory Write and Memory Write and Invalidate transactions
(refer to Sections 5.5. and 5.6.3.).

Revision 1.1

100

 6.2.4. Posted Write Data Parity Errors

 There are two data parity error cases to consider when a bridge forwards a posted write
transaction (a Memory Write or a Memory Write and Invalidate transaction). In the first case,
the error occurs on the bus on which the posted write transaction originates. In the second case,
the posted write transaction completes without error on the originating bus, but an error occurs
when the transaction is completed on the destination bus. The following sections discuss the
error handling methods used by a bridge for each of these cases.

 6.2.4.1. Originating Bus Error

 This section describes the data parity error handling method used by a bridge if an error occurs
when write data is transferred from the originating master to the bridge during a posted write
transaction. This data parity error can occur during transactions that access registers internal to
the bridge or during transactions that are forwarded from one PCI interface of the bridge to the
other. If the transaction is forwarded by the bridge, the bridge must always forward the data and
parity as received on the originating bus to the destination bus to allow the target to observe the
write data parity error condition.

 If a posted write transaction accesses registers internal to the bridge (i.e., it is not forwarded to
the other interface by the bridge), then the bridge must adhere to the requirements of the PCI
Local Bus Specification for reporting data parity errors that occur during the transaction. If the
bridge is responding as the target on the primary interface and it detects a write data parity error,
it must assert primary PERR# (if enabled to do so) and set the Detected Parity Error bit in the
Status register. If the bridge is responding as the target on the secondary interface and it detects
a write data parity error, it must assert secondary PERR# (if enabled to do so) and set the
Detected Parity Error bit in the Secondary Status register.

 If the bridge detects a data parity error when responding as a target to a downstream posted write
transaction on the primary bus, it must:

• assert PERR# on the primary bus

• retain the bad parity and data in its write buffers

• set the Detected Parity Error bit in the Status register

 When the posted write transaction is initiated on the secondary bus by the bridge, the target of
the transaction asserts PERR# (if enabled) provided it also detects the error. If PERR# is
asserted by the target, then the bridge must set the Master Data Parity Error bit in the Secondary
Status register.

 If the bridge detects a data parity error when responding as a target to an upstream posted write
transaction on the secondary bus, it must:

• assert PERR# on the secondary bus

• retain the bad parity and data in its write buffers

• set the Detected Parity Error bit in the Secondary Status register

Revision 1.1

101

When the posted write transaction is initiated on the primary bus, the target of the transaction
asserts PERR# (if enabled) provided it also detects the error. If PERR# is asserted by the
target, the bridge must set the Master Data Parity Error bit in the Status register.

6.2.4.2. Destination Bus Error

This section describes the data parity error handling method used by a bridge if an error occurs
when write data is transferred from the bridge to the target during a posted write transaction
forwarded by a bridge. If a data parity error is detected by the target during a write transaction, it
asserts PERR# if enabled to do so by its Parity Error Response bit. In this case, if the target
resides on the primary interface of the bridge and the Parity Error Response bit in the Command
register of the bridge is set, the bridge must set the Master Data Parity Error bit in its Status
register. Similarly, if the target resides on the secondary interface of the bridge, the bridge must
set the Master Data Parity Error bit in the Secondary Status register.

Additional error response requirements apply when a posted write transaction completes without
data parity errors on the originating bus (the bridge responds as the target), but data parity errors
are reported when the transaction completes on the destination bus (the bridge is the master). In
this case, the bridge cannot pass information on the error back to the originating master.
Therefore, the bridge must also assert SERR# on the primary interface and set the Signaled
System Error bit in the Status register when the following conditions are true:

• a data parity error is not detected by the bridge when it responds as the target on the
originating bus.

• when the bridge completes the transaction (as the master) on the destination bus, the target
detects and reports a data parity error by asserting PERR#.

• the SERR# Enable bit in the Command register is set.

6.3. Master-Aborts

A bridge provides two methods for handling a Master-Abort termination when it is the master of
a transaction as controlled by the Master-Abort Mode bit in the Bridge Control register.

In the default case, the Master-Abort Mode bit is cleared and a Master-Abort is not considered to
be an error unless it occurs during an exclusive access transaction (refer to Section 6.3.3.).
However, when the Master-Abort mode bit is set, it is considered an error condition when the
bridge is the master of any transaction type other than a Special Cycle and the transaction
terminates with a Master-Abort. Master-Aborts are never reported when they occur during
Special Cycle transactions.

6.3.1. Non-posted Transactions

When the Master-Abort Mode bit is cleared, the bridge will operate in a PC compatibility mode.
When a non-exclusive read transaction crosses a bridge and is terminated on the destination bus
by a Master-Abort, the bridge will return FFFF FFFFh to the originating master and terminate
the read transaction on the originating bus normally (by asserting TRDY#). When a non-posted,

Revision 1.1

102

non-exclusive write transaction crosses a bridge and is terminated by a Master-Abort, the bridge
will complete the write transaction on the originating bus normally (by asserting TRDY#) and
discard the write data. In this case, if the bridge is forwarding the transaction upstream and it
terminates with a Master-Abort on the primary interface, the bridge must set the Received
Master-Abort bit in the Status register. Similarly, if the bridge is forwarding the transaction
downstream and it terminates with a Master-Abort on the secondary interface, the bridge must
set the Received Master-Abort bit in the Secondary Status register.

When the Master-Abort Mode bit is set, the bridge must signal a Target-Abort to the originating
master of a read or a non-posted, non-exclusive write transaction when the corresponding
transaction on the destination bus is terminated by a Master-Abort.

In this case, if the bridge is forwarding the transaction upstream and is terminated with a Master-
Abort on the primary interface the bridge must:

• set the Received Master-Abort bit in the Status register

• terminate the corresponding transaction on the secondary bus by signaling a Target-Abort

• set the Signaled Target-Abort bit in the Secondary Status register

 Similarly, if the bridge is forwarding the transaction downstream and is terminated with a
Master-Abort on the secondary interface the bridge, must:

• set the Received Master-Abort bit in the Secondary Status register

• terminate the corresponding transaction on the primary bus by signaling a Target-Abort

• set the Signaled Target-Abort bit in the Status register

 6.3.2. Posted Write Transactions

 If the bridge is forwarding the transaction upstream and it terminates with a Master-Abort on the
primary interface, the bridge must set the received Master-Abort bit in the Status register. If the
bridge is forwarding the transaction downstream and it terminates with a Master-Abort on the
secondary interface, the bridge must set the received Master-Abort bit in the Secondary Status
register. When a Master-Abort is detected on the destination bus by the bridge when forwarding
a posted write burst transaction and the transaction is still in progress on the originating bus, it is
recommended that the bridge terminate the transaction on the originating bus as soon as possible.
When a posted write transaction forwarded by the bridge terminates in a Master-Abort, the
bridge must discard any remaining write data for that transaction (the current data phase and any
additional data phases if a burst transaction.)

 When the Master-Abort Mode bit is cleared and a posted write transaction forwarded by the
bridge terminates with a Master-Abort, no error is reported (note that the Master-Abort bit is still
set). When the Master-Abort Mode bit is set and a posted write transaction forwarded by the
bridge terminates with a Master-Abort on the destination bus, the bridge must:

• assert SERR# on the primary interface

• set the Signaled System Error bit in the Status register (if enabled by the SERR# Enable bit
in the Command register)

Revision 1.1

103

 6.3.3. Exclusive Access Master-Abort

 A bridge must terminate a non-posted exclusive access transaction on its primary interface with
Target-Abort when the transaction terminates with Master-Abort when forwarded to the
secondary interface of the bridge (independent of the Master-Abort Mode bit in the Bridge
Control register). This requirement is necessary to avoid potential deadlock conditions. Note
that exclusive access transactions are supported as downstream transactions only.

 6.4. Target-Aborts

 A bridge may signal a Target-Abort under certain error conditions when it is responding as the
target of a transaction. These include:

• error conditions that occur internal to the bridge when the bridge is responding as the target

• Target-Aborts detected on the destination bus by the bridge when completing a non-posted
transaction

• Master-Aborts that occur on the destination bus when the bridge is completing an exclusive
read transaction

 These conditions are discussed in the follow sections and in Section 6.3.3..

 6.4.1. Internal Errors

 When a fatal error occurs internal to a bridge that prevents the bridge from completing a
transaction as a target, it must terminate the transaction by signaling a Target-Abort. If the error
occurs on primary interface of the bridge, it must set the Signaled Target-Abort bit in the Status
register. If the error occurs on the secondary interface of the bridge, it must set the Signaled
Target-Abort bit in the Secondary Status register.

 6.4.2. Non-Posted Write Transactions

 When forwarding any transaction except for a posted write transaction, a Target-Abort condition
detected by the bridge on the destination bus must be returned to the originating master on the
originating bus as a Target-Abort. If the error occurs during a burst transaction, the error must
be signaled on the originating bus in the same data phase in which it occurred on the destination
bus.

 If a Target-Abort occurs on the primary interface when the bridge is acting as a bus master while
forwarding a non-posted write transaction upstream, the bridge must:

• set the Received Target-Abort bit in the Status register

• complete the corresponding data phase on the secondary interface by signaling a Target-
Abort

• set the Signaled Target-Abort bit in the Secondary Status register

Revision 1.1

104

 If a Target-Abort occurs on the secondary interface when the bridge is acting as a bus master
while forwarding a non-posted write transaction downstream, the bridge must:

• set the Received Target-Abort bit in the Secondary Status register

• complete the corresponding data phase on the primary interface by signaling a Target-Abort

• set the Signaled Target-Abort bit in the Status register

 6.4.3. Posted Write Transactions

 When a bridge forwards a posted write transaction, the target termination for any data phase
cannot be returned to the originating master directly for one of the following reasons:

• The posted write transaction on the originating bus may have already terminated.

• During a posted write transaction, data is transferred on the originating bus first and at a later
time on the destination bus. Thus, it is not possible for the bridge to report the target
completion status for a particular data phase on the destination bus in the corresponding data
phase on the originating bus.

 If a Target-Abort occurs on the primary interface when the bridge is acting as a bus master while
forwarding a posted write transaction upstream, the bridge must:

• set the Received Target-Abort bit in the Status register

• if the SERR# Enable bit in the Command register is set the bridge must also:

 assert SERR# on the primary interface

 set the System Error Signaled bit in the Status register

 If a Target-Abort occurs on the secondary interface when the bridge is acting as a bus master
while forwarding a posted write transaction downstream, the bridge must:

• set the Received Target-Abort bit in the Secondary Status register

• if the SERR# Enable bit in the Command Register is set the bridge must also:

 assert SERR# on the primary interface

 set the System Error Signaled bit in the Status Register

 6.5. Discard Timer Timeout Errors

 When a Delayed Transaction completes on the destination bus, it becomes a Delayed
Completion. Once all ordering requirements have been satisfied and the bridge is ready to
complete the Delayed Transaction with the originating master, a timer referred to as the discard
timer is enabled to count. To avoid a potential deadlock, the bridge is required to delete the
Delayed Completion from its queue if the originating master does not repeat the transaction
before the discard timer expires. A bridge has discard timers for both its primary and secondary
interfaces, the Primary Discard Timer and the Secondary Discard Timer, respectively.

Revision 1.1

105

 The Primary Discard Timer is used to monitor the time it takes for a master on the primary
interface of the bridge to reattempt the transaction corresponding to the Delayed Completion.
The duration of the interval timed by the Primary Discard Timer is controlled by the Primary
Discard Timer bit in the Bridge Control register.

 The Secondary Discard Timer is used to monitor the time it takes for a master on the secondary
interface of the bridge to reattempt the transaction corresponding to the Delayed Completion.
The duration of the interval timed by the Secondary Discard Timer is controlled by the
Secondary Discard Timer bit in the Bridge Control register.

 When either the Primary Discard Timer or Secondary Discard Timer expires, the Discard Timer
Status bit in the Bridge Control register must be set. When the Discard Timer SERR# Enable bit
in the Bridge Control register is set and the SERR# Enable bit in the Command register is set, the
bridge must also assert SERR# on the primary interface of the bridge and set the Signaled
System Error bit in the Status register.

 6.6. Secondary Interface SERR# Assertions

 A bridge never asserts SERR# on its secondary interface (secondary SERR# is an input only
signal). Whenever a bridge detects the assertion of SERR# on its secondary interface (by
another agent), the bridge must set the Received System Error bit in the Secondary Status
register. A bridge is enabled to propagate the secondary SERR# assertion upstream by asserting
SERR# on the primary interface when all the conditions below are met.

• SERR# is asserted on the secondary bus;

• the Secondary SERR# Enable bit in the Bridge Control register is set (SERR# is enabled to
be forwarded); and

• the SERR# Enable bit in the Command register is set (SERR# is enabled to be asserted on
the primary interface).

 This allows SERR# assertions to be propagated upstream through a hierarchy of bridges.

 Whenever a bridge asserts SERR# on its primary interface, it must set the Signaled System
Error bit in the Status register. If either SERR# Enable bit (Bridge Control register or Command
register) is cleared, then SERR# assertions on the secondary interface do not result in SERR#
assertions on the primary interface and do not affect the Signaled System Error bit in the Status
register.

Revision 1.1

106

Revision 1.1

107

�

 Chapter 7
PCI Bus Commands

 7.1. Summary of Bridge Transaction Command Support

Table 7-1 summarizes the support defined or allowed by this specification for a bridge for each
PCI bus command for the one of following four operating cases:

• the bridge initiating a transaction with the bus command as a master on the primary interface

• the bridge responding to a transaction with the bus command as a target on the primary
interface

• the bridge initiating a transaction with the bus command as a master on the secondary
interface

• the bridge responding to a transaction with the bus command as a target on the secondary
interface

 The symbols used in the table entries are defined below:

• NA – Not allowed. This specification does not allow any use of the bus command.

• REQ – Required. This specification requires support of the bus command by a bridge for the
operating case.

• OPT – Optional. This specification defines optional support of the bus command by bridge
for the operating case. An implementation may optionally support the bus command for the
operating case but must do so as specified by this document.

Revision 1.1

108

Table 7-1: Commands Supported By Bridge Interface

Primary
Interface

Secondary
Interface

C/BE[3::0]# Master Target Master Target

0000 Interrupt Acknowledge NA NA NA NA

0001 Special Cycle REQ1 NA REQ2 NA

0010 I/O Read OPT OPT OPT OPT

0011 I/O Write OPT OPT OPT OPT

0100 Reserved NA NA NA NA

0101 Reserved NA NA NA NA

0110 Memory Read REQ REQ REQ REQ

0111 Memory Write REQ REQ REQ REQ

1000 Reserved NA NA NA NA

1001 Reserved NA NA NA NA

1010 Configuration Read NA REQ REQ NA

1011 Configuration Write REQ3 REQ REQ REQ4

1100 Memory Read Multiple OPT OPT5 OPT OPT5

1101 Dual Address Cycle OPT OPT OPT OPT

1110 Memory Read Line OPT OPT6 OPT OPT6

1111 Memory Write and Invalidate OPT OPT7 OPT OPT7

Notes:

1. Only initiated by the bridge when forwarding a Type 1 Configuration transaction that specifies a
conversion to a Special Cycle on the primary bus.

2. Only initiated by the bridge when forwarding a Type 1 Configuration transaction that specifies
conversion to a Special Cycle transaction on the secondary bus.

3. Only initiated by the bridge when forwarding a Type 1 Configuration transaction that specifies
conversion to a Special Cycle transaction with a destination other than the primary bus.

4. Only responded to by the bridge when forwarding a Type 1 Configuration transaction that specifies
conversion to a Special Cycle Transaction on an upstream bus segment.

5. If the Memory Read Multiple command is not supported by the bridge, the bridge must alias the
command to a Memory Read or a Memory Read Line command when responding as a target.

6. If the Memory Read Line command is not supported by the bridge, the bridge must alias the command
to a Memory Read or a Memory Read Multiple command when responding as a target.

7. If the Memory Write and Invalidate command is not supported by the bridge, the bridge must alias the
command to a Memory Write command when responding as a target.

Revision 1.1

109

Chapter 8
Arbitration and Latency

Requirements
8.1. Bridge Interface Priority

Because of the initial latency requirements of the PCI Local Bus Specification, bridges are
required to implement6 Delayed Transactions to complete non-posted transactions that cross
from one interface to the other. Bridges are not required to give one interface priority over the
other but are required to allow fair arbitration between the interfaces.

8.2. Secondary Interface Arbitration Requirements

Every bus segment in a PCI system requires an arbiter. Since a bridge creates a new bus
segment, it is anticipated that an arbiter will be a common bridge feature. However, a bridge is
not required to provide an integral arbiter.

It is recommended that a bridge provide the arbiter for the secondary bus. If the bridge does
provide the arbiter, it must adhere to the arbitration requirements of the PCI Local Bus
Specification. The arbiter is required to use some type of fairness algorithm. The following
excerpt is from the PCI Local Bus Specification and is included here for convenience of the
reader. Refer to the PCI Local Bus Specification for full details.

“An agent requests the bus by asserting its REQ#. Agents must only use REQ# to signal a true
need to use the bus. An agent must never use REQ# to "park" itself on the bus. If bus parking is
implemented, it is the arbiter that designates the default owner. When the arbiter determines an
agent may use the bus, it asserts the agent's GNT#.

The arbiter may deassert an agent's GNT# on any clock. An agent must ensure its GNT# is
asserted on the rising clock edge it wants to start a transaction. Note: A master is allowed to start
a transaction when its GNT# is asserted and the bus is in an Idle state independent of the state of

6 There are a few conditions where a bridge can meet the initial latency requirements for non-posted transactions
without using Delayed Transactions. If this option is used, the bridge must give priority to downstream accesses
when requests reach the bridge on both interfaces at the same time.

Revision 1.1

110

its REQ#. If GNT# is deasserted, the transaction must not proceed. Once asserted, GNT# may
be deasserted according to the following rules.

1. If GNT# is deasserted and FRAME# is asserted, the bus transaction is valid and will
continue.

2. One GNT# can be deasserted coincident with another GNT# being asserted if the bus is not
in the Idle state. Otherwise, a one clock delay is required between the deassertion of a
GNT# and the assertion of the next GNT#� or else there may be contention on the AD lines
and PAR due to the current master doing address stepping.

3. While FRAME# is deasserted, GNT# may be deasserted at any time in order to service a
higher priority7 master or in response to the associated REQ# being deasserted.

8.3. Bus Parking

The arbiter is required to park the bus at a master to keep the AD and C/BE# buses and PAR
from floating when the bus is Idle for long periods. The arbiter may park the bus at any agent
(master) that is present on the secondary bus; however, it is recommended that the arbiter park
the bus at the bridge for the following reasons:

• By parking the bus at the bridge, transactions that originate on the primary bus can complete
faster on the secondary bus. The motivation for this is that the bandwidth on the primary bus
is typically more important than bandwidth on the secondary bus.

• When a bridge is used to support more connectors (expansion boards), the arbiter may not
know if a master resides on the card or if a card is actually present (without special logic).

 8.4. Latency Requirements

 A bridge must adhere to the latency requirements of the PCI Local Bus Specification. These
requirements include the following:

• Target Initial Latency

• Target Subsequent Latency

• Master Data Latency

• Memory Write Maximum Completion Time (for internal bridge registers)

• Master Latency Timer Timeout

 When the bridge is responding as a target to a transaction, it must complete the initial data phase
within 16 clocks (Target Initial Latency) and terminate subsequent data phases (of the same
transaction) within eight clocks (Target Subsequent Latency). To comply with these target
latency requirements, a bridge must use Delayed Transactions to complete non-posted
transactions that cross the bridge.

7 Higher priority here does not imply a fixed priority arbitration, but refers to the agent that would win arbitration at
a given instant in time.

Revision 1.1

111

 Master Data Latency is the number of clocks the master takes to assert IRDY# indicating it is
ready to complete the data phase and transfer data. All PCI devices including bridges are
required to assert IRDY# within eight clocks of the assertion of FRAME# on the initial data
phase and within eight clocks on all subsequent data phases.

 The PCI Local Bus Specification requires targets to complete at least one data phase of a
Memory Write or Memory Write and Invalidate transaction within a specified number of PCI
clocks (Maximum Completion Time) but grants an exception to bridges when the transaction
crosses a bridge. However, a bridge must adhere to the Maximum Completion Time (334 clocks
at 33 MHz or slower and 668 clocks at 66 MHz) when a Memory Write or Memory Write and
Invalidate transaction accesses a location within (or associated with) the bridge. The Maximum
Completion Time requirement is not in effect during device initialization time, which is defined
as the 225 PCI clocks immediately following the deassertion of RST#.

 The Master Latency Timer limits the tenure of a PCI bus master when it is using the bus. When
the bridge is a master on the primary interface, it must relinquish the bus when its primary
interface GNT# has been deasserted and the Master Latency Timer expires. When the bridge is
a master on the secondary interface, it must relinquish the bus when its secondary interface
GNT#8 has been deasserted and the Secondary Master Latency Timer expires. When the Master
Latency Timer expires and GNT# is deasserted while the bridge is the master of a Memory
Write and Invalidate transaction, it must ignore the timeout condition until a cacheline boundary
is reached (see the PCI Local Bus Specification for more details).

 8 When the bridge provides an arbiter for the secondary bus, this grant may be an internal signal.

Revision 1.1

112

Revision 1.1

113

�

 Chapter 9
Interrupt Support

 9.1. Interrupt Routing

 A bridge is not required to route interrupts that originate on the PCI bus connected to the
secondary interface of the bridge through the bridge. The PCI Local Bus Specification requires
the interrupt handler (service routine), or the device which originates the interrupt, to guarantee
that all buffers are flushed between the device and the final destination. This can be
accomplished by the interrupt service routine of the device driver by performing a read of the
device or by the device itself performing a read of the location last written by the device. In
either case, the read will force buffers between the device and the final destination to be flushed.
No special buffer flushing requirements exist for devices that use Message Signaled Interrupts,
as defined by the PCI Local Bus Specification. Interrupt messages naturally flush buffers.

 However, since bridges will be used on expansion boards, the BIOS will assume an association
between device location and which INTx# line it uses when requesting an interrupt. Since only
the BIOS knows how PCI INTx# lines are routed to the system interrupt controller, a mechanism
is required to inform the device driver which IRQ its device will request an interrupt on. The
Interrupt Line register (see Section 3.2.5.15.) is used to store this information. The BIOS code
will assume the following binding behind the bridge and will write the IRQ number in each
device as described in Table 9-1. The interrupt binding defined in this table is mandatory for
expansion boards utilizing a bridge.

Revision 1.1

114

 Table 9-1: Interrupt Binding for Devices Behind a Bridge

 Device Number
on Add-in Bus

 Interrupt Pin on
Device

 Interrupt Pin on
Connector

 INTA# INTA#

 0, 4, 8, 12, INTB# INTB#

 16, 20, 24, 28 INTC# INTC#

 INTD# INTD#

 INTA# INTB#

 1, 5, 9, 13, INTB# INTC#

 17, 21, 25, 29 INTC# INTD#

 INTD# INTA#

 INTA# INTC#

 2, 6, 10, 14, INTB# INTD#

 18, 22, 26, 30 INTC# INTA#

 INTD# INTB#

 INTA# INTD#

 3, 7, 11, 15, INTB# INTA#

 19, 23, 27, 31 INTC# INTB#

 INTD# INTC#

 Device 0 on a secondary bus will have its INTA# line connected to the INTA# line of the
connector. Device 1 will have its INTA# line connected to INTB# of the connector. This
sequence continues and then wraps around once INTD# has been assigned.

 When POST code is initializing the system, it assumes the previous routing information for
devices on an expansion board that utilizes a bridge. POST code writes the appropriate IRQ
information in each device’s Interrupt Line register.

 Note that Table 9-1 does not specify the routing of a bridge’s interrupt pin (if implemented) to
the interrupt pins of the add-in connector. Assuming that the bridge is a single function device,
its interrupt pin is required to be connected to INTA# by the PCI Local Bus Specification.

Revision 1.1

115

�

 Chapter 10
Signal Pins

 10.1. Primary PCI Interface

 10.1.1. Required Signals

 The primary bus requires 50 signals to support PCI. These signals are listed below according to
signal type.

 Signal type:

 s/t/s FRAME#, IRDY#, TRDY#, STOP#, DEVSEL#, PERR#

 t/s AD[31::00], PAR, C/BE[3::0]#, REQ#

 Input IDSEL, CLK, RST#, GNT#, LOCK#9

 o/d SERR#

 10.1.2. Optional Signals

 The primary interface of the bridge may optionally support the 64-bit extensions, Power
Management, JTAG, and 66 MHz operation to provide more functionality or performance as
needed. The bridge may also provide an interrupt pin, if necessary, to support implementation-
specific functions.

 Signal type:

 s/t/s REQ64#, ACK64#

 t/s AD[63::32], PAR64, C/BE[7::4]#

 Input TDI, TCK, TMS, TRST#, M66EN10

 9 Note that in the prior version of the PCI-to-PCI Bridge Architecture Specification LOCK# was defined as a s/t/s on
the primary interface. However, the PCI Local Bus Specification constrains the use of LOCK# to downstream
transactions.

Revision 1.1

116

 Output TDO

 o/d INTA#, PME#

 other 3.3 Vaux

 10.2. Secondary PCI Interface

 10.2.1. Buffered Clocks

 Bridges that buffer the primary interface CLK and provide buffered clocks for secondary bus
devices are common. However, the bridge cannot be a perfect buffer and will introduce clock
duty cycle skew on the buffered clocks. As a result, it is possible that the buffered output clocks
of the bridge will not meet the clock duty cycle requirements of the PCI Local Bus Specification.

 An expansion board that uses devices behind a bridge must accommodate the clock buffering
requirements of that bridge. For example, if the bridge’s clock buffer affects the duty cycle of
CLK, the rest of the devices on the expansion board must accept the different duty cycle.

 The system must always guarantee the timing parameters for CLK at the input of the device in a
PCI expansion slot, even if the motherboard places PCI expansion slots on the secondary side of
a bridge. It is the responsibility of the motherboard designer to choose clock sources and bridges
that will guarantee the timing parameters for CLK for all slots.

 Below are recommendations to designers to minimize the effects of clock skew.

• A bridge designer should minimize the skew introduced on the buffered clocks.

• PCI device designers should accommodate clock duty cycles which are degraded from the
PCI Local Bus Specification.

• Motherboard designers should provide clocks to the expansion connectors that are not
already at the clock duty cycle limits of the PCI Local Bus Specification.

• PCI expansion board designers who use bridges on their design should test for correct
operation of their design over the limits of input CLK duty cycle.

 10 Note that M66EN may also be implemented as a t/s signal to qualify its ability to support 66 MHz operation based
on static configuration information. The bridge may drive M66EN low to indicate that it cannot operate at 66 MHz
(the bridge can never drive it high).

Revision 1.1

117

 10.2.2. Required Signals

 The secondary bus requires the same signals as the primary bus with the following exceptions:

• IDSEL is not required on the secondary interface, since the bridge’s configuration space is
not accessible from the secondary bus.

• If the bridge supports an internal secondary bus arbiter (recommended), a REQ# output pin
and a GNT# input pin are not required. REQ# and GNT# are required if the bridge supports
an external secondary bus arbiter.

• RST# is an output on the secondary bus.

• LOCK# is an output on the secondary bus.

 Signal type:

 s/t/s FRAME#, IRDY#, TRDY#, STOP#, DEVSEL#, PERR#, LOCK#11

 t/s AD[31::00], PAR, C/BE[3::0]#, REQ#

 Input CLK, GNT#

 Output RST#

 o/d SERR#

 10.2.3. Optional Signals

 The secondary interface of the bridge may optionally support the 64-bit extensions and 66 MHz
operation to provide more functionality or performance as needed. The bridge may provide
other PCI signal pins (such as interrupts, power management, and JTAG) or implementation-
specific pins, but those listed below are expected to be the most common. Note that REQ[n]#
and GNT[n]# are provided if the bridge includes a secondary bus arbiter where n signifies the
number of request and grant signal pairs supported by the bridge.

 Signal type:

 s/t/s REQ64#, ACK64#

 t/s AD[63::32], PAR64, C/BE[7::4]#, GNT[n]#

 Input M66EN12, REQ[n]#

 11 The PCI Local Bus Specification constrains the use of LOCK# to downstream transactions by bridges to avoid
deadlock conditions. However, earlier versions of the PCI Local Bus Specification allowed use by any bus master.
Therefore, secondary LOCK# must be implemented as a s/t/s signal to avoid potential bus conflicts.

 12 Note that M66EN may also be implemented as a t/s signal to qualify its ability to support 66 MHz operation based
on static configuration information. The bridge may drive M66EN low to indicate that it cannot operate at 66 MHz
(the bridge can never drive it high).

Revision 1.1

118

Revision 1.1

119

�

 Chapter 11
Initialization Requirements

 11.1. Reset Behavior

 11.1.1. Secondary Reset Signal

 The secondary reset signal, RST#, is a logical OR of the primary interface RST# signal and the
state of the Secondary Bus Reset bit of the Bridge Control register (see Section 3.2.5.17.). The
secondary interface RST# signal is asynchronous with respect to the secondary interface CLK
signal. A small finite delay is permitted from a change of the state of the primary RST# signal
or Secondary Bus Reset bit until a state change of the secondary RST# signal to allow for
propagation delays. When the primary RST# signal is set, or the Secondary Bus Reset bit in the
Bridge Control register is set, the secondary RST# signal must be asserted without any clocked
state logic. Clocked state logic is allowed on the deassertion of the secondary RST# signal.

 11.1.2. Bus Parking During Reset

 All bridges are required to drive the secondary bus AD[31::00], C/BE#[3::0], and PAR signals
to a logic low level (zero) when the secondary interfaces RST# is asserted. This requirement is
independent of the location of the secondary bus arbiter (internal or external to the bridge). A
small finite delay (a few clocks) is permitted from the assertion of the secondary RST# signal
until the bridge drives the secondary signals to zero. This delay is intended to allow time for the
synchronization of the reset event (such as the assertion of the primary interface RST# signal)
which may be necessary for internal state machines to insure that AD[31::00], C/BE#[3::0],
and PAR will be driven to zero. During the time interval (if any) from the assertion of the
secondary interface RST# signal and the parking of the AD[31::00], C/BE#[3::0], and PAR
signals to zero, the bridge must tri-state these same signals.

Revision 1.1

120

 11.2. System Initialization

 When bridges are present in a system, the BIOS is required to provide the following functions
during the initialization process (each will be discussed in the following sections):

• Assignment of PCI bus numbers

• Allocation of address spaces (Prefetchable Memory, Memory Mapped I/O, I/O)

• Writing the IRQ number into each device

• Initializing the PCI display subsystem

11.2.1. Assigning Bus Numbers

The BIOS must assign PCI bus numbers to each bridge in the system. In what order they are
assigned and when the assignments are made is not specified. All buses located behind a bridge
must reside between the Secondary Bus Number and the Subordinate Bus Number (inclusive).

11.2.2. Allocating Address Spaces

When the BIOS finds a bridge, it must map all devices that reside below the bridge into one of
either the I/O, the memory mapped I/O, or prefetchable memory address ranges supported by the
bridge. The I/O address range (see Section 4.2.) has a minimum granularity of 4 KB (aligned)
and a maximum of 64K. The I/O range may be restricted to the first 64 KB of the PCI I/O
address space (0000 0000h to 0000 FFFFh) if only 16 bit I/O addressing is supported. If 32-bit
I/O addressing is supported, then the I/O address range is permitted to reside anywhere in the 4
GB PCI I/O address space (the 4 KB granularity and size restrictions still apply). The memory
mapped I/O range (see Section 4.3.) can reside anywhere in the low 4 GB of the memory space
with a granularity of 1 MB (aligned). The prefetchable memory range (see Section 4.4.) can
reside in a 32 or 64-bit address space with a minimum of 1 MB (alignment).

Since bridges have only one range for each address space type (I/O, memory mapped I/O, or
prefetchable memory), the BIOS must group all devices that use the same type of space into a
single range. This implies that when a bridge has multiple bridges and/or devices behind it, the
BIOS must be able to group them into a single range per address space type.

Revision 1.1

121

+RVW�%XV

3&,�%XV��

3&,�%XV��

3&,�%XV��

%ULGJH��

%ULGJH��

%ULGJH��

'�

'�

'�

'�

'�

'�

'�

'�

'�

Figure 11-1: Bus Numbering Example

For example, in Figure 11-1, device 0 on bus 1 and device 2 on bus 2 both require I/O space. (All
other devices do not require I/O space.) For the bridge (bridge 1) that resides between buses 0
and 1 to handle the decode of I/O space, the two requests for I/O space need to be mapped such
that bridge 1 can decode all I/O transactions with a single range decode and forward them down.
In this example, which is illustrated in Figure 11-2, device 0 on bus 1 would be assigned an I/O
range (by programming its I/O BAR) and device 2 on bus 2 would be assigned a different I/O
range (by programming its I/O BAR). However, for the bridge to decode them using a base and
limit register, these two ranges need to be adjacent to each other. Bridge 1’s I/O Base register is
programmed with the value of device 0’s I/O BAR register while bridge 1’s I/O Limit register is
programmed with the value of device 8’s I/O BAR register. Bridge 0 (the host bridge) would be
programmed the same as bridge 1.

EDVH�RI�GHYLFH���RQ�EXV��

OLPLW�RI�GHYLFH���RQ�EXV��

EDVH�RI�GHYLFH���RQ�EXV��

OLPLW�RI�GHYLFH���RQ�EXV��

%ULGJH��

%ULGJH���DQG��

Figure 11-2: Example of Address Range Coalescing

Revision 1.1

122

The same methodology is required for the memory mapped I/O space and prefetchable memory
space. The only difference is the number of devices that need to be assigned space and the size
of the space for each device. To minimize the wasted space, the largest requests should be
allocated first then filled in with smaller requests in the same contiguous range.

To summarize, all devices behind a given bridge must be allocated I/O, memory mapped I/O, or
prefetchable memory space in such a way that the bridge can implement a single address range
for each type.

11.2.3. Writing IRQ Numbers into Interrupt Line Register(s)

The BIOS must write the IRQ (or vector number) into each device’s Interrupt Line register when
an Interrupt Pin is supported. For motherboard devices, the BIOS knows how a device’s
interrupt pin is routed to the interrupt controller. For devices that can be added into the system
by a PCI connector (expansion boards), a pre-defined routing is required for devices that reside
behind a bridge. This routing is described in Section 9.1.. For expansion boards with bridges,
the BIOS uses the device number and bus number to determine which IRQ line of the interrupt
controller each device INTx# pin is connected to.

Table 11-1 is an example of a routing where:

• device 2 is on bus 2

• bridge 2 is device 3 on bus 1

• bridge 1 is device 4 on bus 0

As shown in Table 11-1, using the routing specified by Section 9.1., device 2 on bus 2 (INTA#
pin of the device) is connected to INTC# of bus 2. INTC# on bus 2 is connected to INTB# on
bus 0.

Table 11-1: Interrupt Routing Example

Device # Bus # INTx# of
Device

INTx# on Bus

2 2 INTA# INTC#

3 1 INTC# INTB#

4 0 INTB# INTB#

Revision 1.1

123

11.3. PCI Display Subsystem Initialization

11.3.1. Initial Conditions

As specified in the PCI Local Bus Specification and in this document, the configuration bits
controlling a bridge’s or display device’s response to VGA accesses is hardware initialized at
power-up to the following states:

• PCI-to-PCI bridges (PPBs) power-on to ignore all VGA accesses

 VGAEnable --> 0

 VGASnoopEnable --> 0

• Non-VGA compatible devices (GFXs) power-on to snoop VGA palette writes

 VGAPaletteSnoop --> 1

• VGA compatible devices (VGAs) power-on to "not snoop" VGA palette writes

VGAPaletteSnoop --> 0

11.3.2. Initialization Algorithm

1. Identify boot VGA device, VGABoot. Search ISA/EISA first, then search PCI bus hierarchy
top to bottom (i.e., starting at PCI Bus 0). The first VGA device encountered is the
VGABoot device. If VGABoot is found on ISA/EISA, display initialization is complete. If
found on PCI, save the PCI bus number, VGABusNum (where VGABoot resides), and
continue with steps 2-6.

2. Enable VGABoot’s response to all VGA I/O and memory spaces by setting I/O Space and
Memory Space enables in the device’s configuration Command register.

3. Starting at PCI bus VGABusNum, traverse the bus hierarchy up towards PCI bus 0. For each
bridge passed, set that bridge’s VGAEnable configuration bit.

4. Starting at PCI bus number VGABusNum, search the PCI bus hierarchy under bus
PCIBusNum (i.e., all buses secondary to PCIBusNum) bottoms-up scanning for GFXs. Once
the first GFX device is found, flag that a GFX was found and discontinue all downstream
bus searches. Set the I/O Enable13 and VGAPaletteSnoop in that GFX’s configuration
Command register. If no GFX is found downstream, then display initialization is complete.
Otherwise, continue with steps 5-6.

13 If the device has a valid I/O address range, its Base Address Register must be programmed. The value could be
temporary or permanent depending on the initialization algorithm. Some value is required to keep the device from
responding to I/O addresses.

Revision 1.1

124

5. Traverse back up the bus to VGABusNum. At each bridge passed, set that bridge’s
VGASnoopEnable bit.

6. Set VGAPaletteSnoop in VGABoot’s configuration Command register. If not, clear the bit.

11.3.3. Algorithm Pseudo-code

/* This function configures all PCI-to-PCI bridges, VGAs and GFXs
participating in the boot procedure. Once executed, POST code
may display to all devices via VGA access. */

DisplayInit()

{

IdentifyBootVGA(VGABoot,VGABusNum,BootVGAonPCI);

EnableVGADevice(VGABoot);

if BootVGAonPCI

{

for (all PCI-to-PCI bridges upstream of VGABusNum)

PPB.VGAEnable = 1;

GFXScanR(VGABusNum);

}

if GFXFound

VGABoot.VGAPaletteSnoop = 1;

}

/*This function implements a recursive traversal algorithm that
scans the bus tree below BusNum bottoms-up for the first GFX
device. Once it finds that device, it returns to bus where the
VGA device resides, configuring the PCI-to-PCI bridges and GFXs
along the way. It returns GFXFound if any GFX was found under
BusNum.*/

GFXScanR(BusNum)

{

for ((each PCI-to-PCI bridge on BusNum) && !GFXFound)

{

GFXScanR(PPB.SecondaryBusNumber);

if GFXFound

PPB.VGASnoopEnable = 1;

}

for ((each GFX on BusNum) && !GFXFound)

{

GFX.VGAPaletteSnoop = 0;

GFXFound = 1;

}

}

Revision 1.1

125

Chapter 12
VGA Support

12.1. VGA Support

There are two issues related to the support of VGA compatible devices in systems with bridges:
ISA compatible addressing and palette snooping. To support a VGA device downstream of a
bridge, the bridge must have the capability to be configured to recognize the ISA compatible
addresses used by VGA devices. A bridge must also support configurations where a graphics
device downstream of the bridge needs to snoop VGA palette accesses.

12.1.1. VGA Compatible Addressing

The VGA Enable bit in the Bridge Control register (see Section 3.2.5.17.) is used to control
response by the bridge to both the VGA frame buffer addresses and to the VGA register
addresses. When a VGA compatible device is located downstream of a PCI to PCI bridge, the
VGA Enable bit must be set. When set, the bridge will positively decode and forward memory
accesses to VGA frame buffer addresses and I/O accesses to VGA registers from the primary to
secondary interface and block forwarding of these same accesses from the secondary to primary
interface (see Section 4.5.1.).

VGA memory addresses:

0A 0000h through 0B FFFFh

VGA I/O addresses (including ISA aliases address - AD[15::10] are not decoded):

AD[9::0] = 3B0h through 3BBh and 3C0h through 3DFh

The bridge does not decode or forward VGA BIOS memory addresses when the VGA Enable bit
is set. ROM code provided by PCI compatible devices may be mapped to any address in PCI
memory address space via the Expansion ROM Base Address register in the device’s
configuration header and must be copied to system memory before execution.

Revision 1.1

126

12.1.2. VGA Snooping

Snooping is essentially a broadcast mechanism and suffers from the lack of flow control. In a
PCI system, the presence of hierarchical buses and subtractive decoding agents further
complicate the issues associated with the lack of flow control. Hierarchical bus structures are
easily created in PCI systems through the application of bridges. In many PCI systems, a
subtractive decoding expansion bus bridge will typically exist for ISA or EISA. The solution for
VGA palette snooping requires restrictions on configurations and appropriate support in VGA
compatible devices, PCI-to-PCI bridges, and graphics devices that do not have VGA
compatibility. Expansion bridges that use subtractive decoding for VGA palette addresses do not
require any special support for VGA palette snooping.

There are basically four types of devices that must be considered when specifying a VGA palette
snooping mechanism for PCI:

• VGA compatible graphics devices;

• subtractive decoding expansion bus bridges;

• PCI-to-PCI bridges; and

• graphics devices that do not have VGA compatibility.

Each of these devices may have to participate in VGA palette accesses. The behavior of each
type of device must be selected based on the configuration of the system. The different
behaviors of each device type are described below.

The VGA palette addresses are as follows (inclusive of ISA aliases - AD[15::10] are not
decoded):

AD[9::0] = 3C6h, 3C8h, and 3C9h

12.1.2.1. VGA-compatible Graphics Devices

The VGA palette snoop mechanisms for a VGA compatible device is described in the PCI Local
Bus Specification. VGAs must support two modes of VGA palette access:

• positively decode palette reads and writes, or

• positively decode palette reads and snoop palette writes when another agent positively
decodes the palette write

 The VGA palette access method is controlled by the VGA Palette Snoop bit in the configuration
Command register as specified by the PCI Local Bus Specification. When the bit is set, the
device must not respond to palette write accesses but must still respond to palette read accesses.

 Note that any VGA device that interfaces to PCI directly can also be disabled from responding to
VGA compatible addresses. This can be done by the Memory Space and I/O Space enable bits
in the device’s configuration Command register. An expansion bridge that uses subtractive
decoding will not forward a VGA palette access when the transaction is positively decoded by
another PCI agent.

Revision 1.1

127

 12.1.2.2. Non-VGA-compatible Graphics Devices

 Non-VGA compatible graphics devices must snoop VGA palette writes to provide VGA support
via the VGA feature connector. Non-VGA compatible graphics devices must also support two
modes of VGA palette access:

• positively decode palette writes
if a non-VGA compatible device is the only device responding to palette writes on a
given bus in the hierarchy
at least one agent on a given PCI bus must claim the palette access

• snoop palette writes (absorb write without flow control)
if there is another agent that positively decodes the palette write on the same bus
segment

 A non-VGA compatible graphics device can be identified by the Class Code and Sub-Class Code
fields in the device’s configuration space header (class code = 03h and sub-class code = 80h).
This type of graphics device should implement the VGA Palette Snoop bit in the Command
register but interpret the bit in the following way:

• VGA Palette Snoop bit is set (default state)
when set the device must snoop palette writes
the device does not claim the cycle by asserting DEVSEL#
palette reads are ignored

• VGA Palette Snoop bit is cleared
when clear the device must claim palette writes by asserting DEVSEL#
palette reads are ignored

 Note the device may provide an implementation specific method to allow the driver to configure
it to ignore palette writes. This may be done when the VGA Snoop bit is clear and the device
driver knows that the device does not need to provide VGA compatibility via palette snooping
(i.e., is not a boot device).

 12.1.2.3. PCI-to-PCI Bridges

 A PCI-to-PCI bridge must support three modes of VGA palette access:

• ignore palette accesses
when there are no graphics agents downstream that need to snoop or respond to VGA
palette access cycles

• positively decode and forward palette writes
when there are graphics agents downstream of the bridge that need to respond to or
snoop palette writes

• positively decode and forward palette reads and writes
when VGA compatible graphics agents that are downstream of the bridge are being used

Revision 1.1

128

 The VGA Enable and VGA Snoop Enable bits in the Bridge Control register (see
Section 3.2.5.17.) select the bridge’s response to palette accesses in the following way.

 VGA Enable
Bit

 VGA Snoop
Enable Bit

 Bridge Response to Palette Accesses

 0 0 Ignore all palette accesses

 0 1 Positively decode palette writes (ignore
reads)

 1 x Positively decode palette reads and writes

 12.1.2.4. Subtractive Decoding Bridges

 Subtractive decoding bridges need no special support for VGA palette snooping. If another PCI
agent positively decodes a palette access, that access will not be forwarded to the downstream
interface of the subtractive bridge.

 12.2. VGA Configuration Restrictions

 The following configuration restrictions must be satisfied for the VGA palette snooping
mechanisms to function correctly.

• The graphics agent that responds to palette reads and the graphics agent that responds to or
snoops palette writes must be located along the same path in the PCI bus hierarchy (see
examples of illegal configurations in Sections 12.3.12., 12.3.11., and 12.3.14.).

• When a PCI-to-PCI bridge is configured to respond to palette accesses (writes or reads and
writes) a subtractive decoding agent upstream of the bridge will not be able to respond to or
snoop palette accesses.

The subtractive agent will not respond to the access since it was claimed by an agent on
the PCI (i.e., the PCI-to-PCI bridge) bus.
For example, a VGA device located on ISA/EISA cannot be used in conjunction with a
VGA compatible or VGA snooping graphics device that is located behind a PCI-to-PCI
bridge.

• When a PCI-to-PCI bridge is configured to positively decode palette writes (and not palette
reads), a graphics device upstream of the bridge must be configured to respond to palette
reads and to absorb (snoop) palette writes:

The bridge positively decodes the palette write for a downstream device.
Note that a device downstream of the bridge must be configured to respond to the palette
writes (i.e., assert DEVSEL# to prevent the cycle from terminating with a master-abort).

• When a PCI-to-PCI bridge is configured to positively decode palette writes and palette reads,
a graphics device upstream of the bridge must be configured to absorb (snoop) palette writes:

The bridge positively decodes palette reads and writes for a downstream device (i.e., a

Revision 1.1

129

VGA compatible device).
Note that a device downstream of the bridge must be configured to respond to the palette
writes and palette reads (i.e., assert DEVSEL# to prevent the cycle from terminating
with a master-abort).

12.3. VGA Palette Snooping Configuration Examples

The configuration rules for VGA Palette Snooping are more easily understood by example.

The decoding behavior for palette snooping is noted in the examples using the format xRyW
where x and y describe the palette address decoding behavior of the device during reads (R) and
writes (W) respectively. The symbols for x and y may be as follows:

Symbol Palette Address
Decoding Method

- subtractive decoding

+ positive decoding

i ignore access

s snoop access

12.3.1. VGA and GFX on PCI Bus 0

CPU

VGA

GFX

+R+W

iRsW

Revision 1.1

130

12.3.2. GFX Downstream of Subtractive Bridge

CPU

VGA

GFX
+RsW

iRsW

-B

-R-W

12.3.3. VGA Downstream of Subtractive Bridge

CPU

GFX

VGA
iRsW

+R+W

-B

-R-W

Revision 1.1

131

12.3.4. GFX Downstream of Positive Bridge

CPU

VGA

GFX
+RsW

iR+W

+B

iR+W

12.3.5. VGA Downstream of Positive Bridge

CPU

GFX

VGA
iRsW

+R+W

+B

+R+W

Revision 1.1

132

12.3.6. VGA and GFX Downstream of Subtractive Bridge

CPU

GFX

VGA

iRsW

+R+W

-B

-R-W

12.3.7. VGA and GFX Downstream of Positive Bridge

CPU

GFX

VGA

iRsW

+R+W

+B

+R+W

Revision 1.1

133

12.3.8. GFX Downstream of VGA on Same Path

CPU

+B GFX

iR+W iR+W
+B

+R+W
VGA

+RsW

12.3.9. VGA Downstream of GFX on Same Path

CPU

+B VGA

+R+W +R+W
+B

+R+W
GFX

iRsW

Revision 1.1

134

12.3.10. GFX Far Downstream of VGA on Same Path

CPU

+B

VGA

iR+W

+RsW +B

iR+W

GFX

iR+W

12.3.11. VGA Far Downstream of GFX on Same Path

CPU

+B

GFX

+R+W

iRsW +B

+R+W

VGA

+R+W

Revision 1.1

135

12.3.12. Illegal - Write Never Gets to GFX

CPU

GFX

VGA

iRsW

+R+W

+B

+R+W

-B

-R-W

12.3.13. Illegal - Write Never Gets to VGA

CPU

VGA

GFX

+R+W

iR+W

+B

iR+W

-B

-R-W

Revision 1.1

136

12.3.14. Illegal - Two Devices Respond to Writes

CPU

VGA

GFX

+R+W

iR+W

+B

iR+W

+B

+R+W

Revision 1.1

137

Chapter 13
Slot Numbering

13.1. Introduction

PCI system software uniquely addresses every PCI device with a bus number and a device
number. These two numbers are used by system hardware to deliver Configuration transactions
to the proper bus and enable (assert IDSEL to) the proper device.

In addition to this unique logical identification, many situations require the unique physical
identification of each device. Physical identification of a particular expansion board is often
simple if there is only one board of each type in the system. But the situation becomes more
difficult if the system contains multiple expansion boards of the same type. The following
situations illustrate the need for the user physically to identify a particular expansion board,
when multiple identical expansion boards are installed in a system:

1. When plugging in an external cable, the user must identify the appropriate expansion board.

2. When configuring items such as the operating system, device drivers, and protocol stacks,
the user must identify the device to the software. For example, when configuring network
controllers, the user must typically specify a controller (identified by slot number) and then
assign a network address and the protocols to use with that controller.

3. If an expansion board fails in a system, software such as diagnostic tools must have a way to
identify to the user which expansion board has failed so that the user can physically replace
it.

4. Hot-plug operations are required by the PCI Hot-Plug Specification to use physical slot
numbers in the user interface.

PCI bus numbers throughout the system can change with the introduction or removal of one PCI-
to-PCI bridge anywhere in the system, so bus and device numbers are not suitable for the user to
physically identify the device. The slot number is the constant physical property by which the
user identifies an expansion board. Software must translate between this constant physical
property (slot number) used by the human user and the logical identifier (bus and device number)
used by the system software.

Systems containing PCI slots typically partition the slots physically into two kinds of groups.
Algorithms for translating between logical and physical slot identifications vary depending upon
in which kind of group the slot is located. The group associated most closely with the CPU that

Revision 1.1

138

initializes the PCI Configuration Space is called the main chassis. A group of PCI slots that can
be connected to and disconnected from the main chassis is said to reside in a PCI expansion
chassis. At the system vendor’s option, an expansion chassis can be tightly coupled physically
to the main chassis or can be separated from the main chassis by a great distance. In general, if a
chassis containing PCI slots can be connected and disconnected from a main chassis, that chassis
is considered an expansion chassis and must use the slot numbering mechanisms described here
for expansion chassis. If an expansion chassis does not use the slot numbering mechanisms
described here, the system vendor must provide a proprietary mechanism for translating between
logical and physical slot identifiers.

For slots in the main chassis the translation between logical bus and device numbers and physical
slot numbers is made possible by a slot number field in the IRQ routing table in system ROMs
that follow the PCI BIOS Specification14. For PCI expansion chassis the same translation is
made possible by two registers, Chassis Number and Slot Number, in certain PCI-to-PCI bridges.
The registers are required only in some bridges because they are unnecessary for bridges on
expansion boards or in the main chassis. They are required in bridges that provide additional
expansion slots in expansion chassis.

PCI expansion chassis are often built with multiple PCI-to-PCI bridges arranged in a hierarchical
fashion. Three examples are shown in Figures 13-3 through 13-5. The slot numbering algorithm
presented later in this chapter calculates the slot number of a device by traversing the bus
hierarchy in a predetermined order. Each time the algorithm encounters the beginning of a new
chassis, it remembers the chassis number and begins accumulating the number of expansion slots
until it reaches either the device it is trying to identify or the beginning of another chassis.
Device numbers for expansion slots, bridges, and other devices must be assigned in a specific
order to enable the algorithm properly to determine the chassis and slot number.

The remainder of this chapter focuses on three areas of requirements for slot numbering in
expansion chassis:

1. Expansion chassis device numbering requirements. System software assumes PCI device
numbers are assigned in a particular order in expansion chassis.

2. The slot numbering registers in bridges used to create expansion slots.

3. The software algorithm that uses the expansion chassis device numbering assumptions and
the contents of the slot numbering registers to translate between logical and physical device
identifications for devices located in PCI slots in expansion chassis.

13.2. Device Number and Slot Number Assignment Rules

System software assumes that PCI device numbers (that is, the number that appears in
AD[15::11] of a Type 1 Configuration transaction, and is converted to AD[31::16] of a Type 0
Configuration transaction by the bridge) are assigned to devices on the secondary bus in a
particular order in PCI expansion chassis. These assumptions are combined with the contents of
the Slot Number and Chassis Number registers to enable the software algorithm shown in
Figure 13-6 to translate between bus/device number and chassis/slot number.

14 PCI BIOS Specification, Revision 2.1, PCI Special Interest Group, August 26, 1994.

Revision 1.1

139

1. Slot numbers within a single expansion chassis start at 1 and increment sequentially.

2. The PCI device numbers for each expansion slot on the same bus segment start at 1 and
increment sequentially. Embedded devices (including bridges to other buses or slots) must
be assigned device numbers higher than the last slot on that bus. Furthermore, embedded
bridges must be assigned device numbers highrer than all other embedded devices. Device
number 0 is not used for any device (that is, AD16 from the PCI-to-PCI bridge is not
connected to any IDSEL pin).

3. If a single expansion chassis includes multiple bridges that support expansion slots on their
secondary buses, the slot numbers for each bridge must increment sequentially (no repeated
or missing slot numbers) from one bridge to the next. The bridges must be arranged so they
are discovered by the slot numbering algorithm (described later) in the same order as their
respective slot numbers. In other words, such bridges must be arranged as follows:

a. If they share the same primary bus, the bridge device numbers must be assigned in the
same order as the slot numbers.

b. If they are arranged hierarchically, a superior bridge (i.e., a bridge closer to the CPU)
must have lower slot numbers than all its subordinate bridges (i.e., bridges whose
primary bus numbers fall between the secondary and subordinate bus numbers of the
superior bridge, inclusive).

Any bridge anywhere in the hierarchy can be implemented with no slots directly on its secondary
bus. Bridges embedded on a expansion boards commonly have no slots behind them.
Figure 13-4 shows an example of bridge in an expansion chassis with no slots on its secondary
bus.

All the devices and functions on a single expansion board use the same chassis number and slot
number. (An adapter card such as a multi-headed NIC or SCSI controller behind an embedded
bridge reports the same chassis number and slot number for all devices on that card.)

Specialized bridges (bridges other than general-purpose PCI-to-PCI bridges) can also be used to
connect to expansion chassis. Such bridges must use a Type 1 configuration header and include
the slot numbering registers in their configuration space, if they are to be included in the
standard slot numbering scheme of the system. Software routines that are designed to discover
slot numbering registers only in bridges with Type 1 configuration headers will not discover
slots behind other types of bridges. Expansion slots behind bridges that do not follow this
specification require specialized software to translate between bus/device number and
chassis/slot number.

It is theoretically possible to design a specialized bridge that physically connects an expansion
slot in one chassis to slots in another chassis, and the bridge appears as a single logical device in
the PCI bus hierarchy. For example, in Figure 13-3 the bridge at the left labeled the “source”
bridge and Bridge A could be combined into a single logical device. However, such an
implementation is discouraged. In Figure 13-3 if the source bridge and Bridge A are combined,
the combined bridge must be marked as the first bridge in the expansion chassis, so the new
chassis number can be recorded, and to indicate that the next slot is slot number 1. In that case,
the source bridge would appear (to the slot numbering algorithm) to be located in the expansion
chassis, even though the first part of the bridge is physically located on an expansion board in the
main chassis. The recommended implementation is for the source bridge always to appear in the

Revision 1.1

140

PCI bus hierarchy as a separate logical bridge device from the first bridge in the expansion
chassis.

Additional devices and functions are permitted to be integrated with bridges to expansion
chassis. Devices that appear in the hierarchy directly on the secondary bus of the source bridge
are reported as being embedded devices in the same chassis and slot as the source bridge.
Devices that appear in the hierarchy on the secondary bus of a bridge in an expansion chassis are
reported as being embedded devices in the expansion chassis. Note that a device integrated with
the bridge but appearing in the PCI bus hierarchy as a separate device on the bridge’s secondary
bus is still required to use a device number higher than the last slot of the bridge’s secondary bus.

13.3. The Slot Number Register

The slot numbering registers are generally optional. They are required for bridges used in the
following applications:

• The first bridge in a PCI expansion chassis

• All bridges in an expansion chassis that have PCI slots on their secondary bus

One of the slot numbering registers, the Expansion Slot register, is shown in Figure 13-1. The
Expansion Slot register is initialized by hardware before the system’s PCI configuration routine
executes. The configuration routine uses the contents of this register to determine how many
physical slots are present on the secondary bus of this bridge, and how they are connected. If the
Expansion Slot register in a bridge is not implemented, the PCI configuration routine assumes
that no slots exist directly on the secondary bus of this bridge.

� � � � � � � �

5HVHUYHG)LUVW�LQ
&KDVVLV

([SDQVLRQ�6ORWV�3URYLGHG

Figure 13-1: Expansion Slot Register

Bits 4-0, the Expansion Slots Provided field, contains the binary encoded value of the number of
expansion slots that are provided directly on the secondary bus of this bridge. If no expansion
slots are implemented on the secondary bus of a particular bridge, this field is initialized to 0.

The first bridge in the expansion chassis (that is, the bridge with the lowest primary bus number,
or the lowest device number among bridges with the same primary bus number) will have the
First in Chassis bit set to 1. Additional bridges (subordinate to the first bridge or those having
higher device numbers on the same bus) have the First in Chassis bit reset to 0.

13.4. The Chassis Number Register

Each chassis containing PCI slots is assigned by PCI configuration software a unique chassis
number between 0 and 255 inclusive. The main chassis is always chassis number 0. Chassis
numbers need not be sequential.

Revision 1.1

141

Figure 13-2 shows the Chassis Number register. If a bridge supports the slot numbering
registers, PCI configuration software will initialize the Chassis Number register in that bridge.
All bridges in the same chassis are initialized with the same chassis number, even if the bridge
has no expansion slots on its secondary bus (e.g., a bridge on an expansion board).

Run-time software will read the chassis number from this register when translating between bus
and device number and chassis and slot number.

� � � � � � � �

&KDVVLV�1XPEHU

Figure 13-2: Chassis Number Register

The designer of the PCI-to-PCI bridge that includes the Chassis Number register has two options
for initialization:

1. Initialized to 0 at reset.

2. Non-volatile, not affected by reset.

If the Chassis Number register is initialized to 0 at reset, system initialization software will
assign a chassis number each time the bridge is reset. This option requires the least amount of
hardware of the two initialization options. However, if a chassis is installed or removed from the
system, or if connections to expansion chassis are rearranged in the main chassis, all chassis
numbers throughout the system might change from one reset event to the next.

If the Chassis Number register is non-volatile and has previously been initialized, system
initialization software will discover a non-zero number in the Chassis Number register and not
modify it (unless it is discovered to conflict with another chassis number; e.g., if a new chassis
was added). This option provides the most advantages to the user, since the chassis numbers
never change unless a new expansion chassis is added that uses the same number as an existing
one.

13.5. A Slot Numbering Example

The diagrams shown in Figure 13-3 through Figure 13-5 contain all the elements that affect the
numbering of PCI expansion slots. In both Figure 13-3 and Figure 13-4 a single PCI expansion
chassis containing a hierarchy of bridges is connected to the main chassis via the PCI-to-PCI
bridge on the left side (the arrow indicates the connection to the main chassis). Figure 13-5
represents a system in which multiple expansion chassis are connected to the main chassis
through a single device in the main chassis. All bridges in the expansion chassis in this example
are connected as peers in the PCI bus hierarchy.

Above each expansion slot in the figures is the slot number that is physically labeled on the slot.
The other numbers shown are the PCI device numbers that are assigned to embedded devices, or
would be assigned to devices installed in slots.

In Figure 13-3, PCI-to-PCI Bridge A is the first bridge in the expansion chassis, so its First in
Chassis bit is set. This bridge supports slots directly on its secondary bus (Bus 1), so slot 1 is

Revision 1.1

142

there. Slots must be numbered sequentially (starting at 1) and device numbers are equal to slot
numbers. Also on Bus 1 is an embedded PCI device. It is assigned device number 5, since it is
permitted to be any number higher than the last slot on Bus 1.

Also on Bus 1 are PCI-to-PCI Bridges B and C, each with three expansion slots on their
secondary interfaces. Since both Bridges B and C are subordinate to Bridge A, the First in
Chassis bits for both Bridges B and C are cleared. Both are initialized with the same chassis
number as Bridge A. Furthermore, since Bridge B sources the bus with the lower numbered
slots, its device number on Bus 1 must be smaller than the device number for Bridge C.
Accordingly, Bridges B and C are assigned device numbers 6 and 7 respectively. Device
numbers for the slots behind the subordinate bridges are assigned sequentially starting with
device number 1, even though the slot numbers continue in sequence after the slots for the
previous bus segment.

Bridges D and E are examples of bridges embedded on expansion boards. Bridge D typifies a
bridge that does not implement slot numbering registers, and Bridge E typifies a bridge that does.
Since Bridge E has no slots behind it, its Expansion Slots Provided field is initialized to 0 and its
First in Chassis bit is cleared by hardware. PCI configuration software initializes the chassis
number to that of the chassis in which the expansion board is installed.

3&,�%ULGJH

�$�

&KDVVLV����

)LUVW��<HV

��6ORWV���

� � � �

� � �

� � ��

6ORW�1XPEHUV

'HYLFH�1XPEHUV

� � �

� � �

� � � �

%XV��

%XV��

�

�

(PEHGGHG

3&,�'HYLFH

�

%XV��

3&,�%ULGJH��'�

VORW�UHJLVWHUV

QRW

LPSOHPHQWHG

([SDQVLRQ

&DUG

'HYLFH

([SDQVLRQ

&DUG

'HYLFH

%XV��

3&,�%ULGJH

�%�

&KDVVLV����

)LUVW��1R

��6ORWV���

�

�

3&,�%ULGJH

�&�

&KDVVLV����

)LUVW��1R

��6ORWV���

%XV��

3&,�%ULGJH��(�

&KDVVLV����

)LUVW��1R

��6ORWV���

([SDQVLRQ

&DUG

'HYLFH

([SDQVLRQ

&DUG

'HYLFH

�

�

([SDQVLRQ�&KDVVLV

6RXUFH

3&,�%ULGJH

&KDVVLV����

)LUVW��1R

��6ORWV���

%XV��

Figure 13-3: Example PCI Expansion Chassis with Slots on First-in-Chassis Bridge

Revision 1.1

143

3&,�%ULGJH

�$�

&KDVVLV����

)LUVW��<HV

��6ORWV���

� � �

� � �

6ORW�1XPEHUV

'HYLFH�1XPEHUV

� � �

� � �

%XV��

%XV��

�

�

(PEHGGHG

3&,�'HYLFH

�

%XV��

3&,�%ULGJH��'�

VORW�UHJLVWHUV

QRW

LPSOHPHQWHG

([SDQVLRQ

&DUG

'HYLFH

([SDQVLRQ

&DUG

'HYLFH

%XV��

3&,�%ULGJH

�%�

&KDVVLV����

)LUVW��1R

��6ORWV���

�

�

3&,�%ULGJH

�&�

&KDVVLV����

)LUVW��1R

��6ORWV���

%XV��

3&,�%ULGJH��(�

&KDVVLV����

)LUVW��1R

��6ORWV���

([SDQVLRQ

&DUG

'HYLFH

([SDQVLRQ

&DUG

'HYLFH

�

�

([SDQVLRQ�&KDVVLV

6RXUFH

3&,�%ULGJH

&KDVVLV����

)LUVW��1R

��6ORWV���

%XV��

Figure 13-4: Example PCI Expansion Chassis Without Slots on First-in-Chassis Bridge

In Figure 13-4, the first bridge in the expansion chassis has no slots directly on its secondary bus.
As in Figure 13-3, the expansion chassis begins with Bridge A, but Bridge A supports only an
embedded device (device number 5), not any expansion slots. Bridge B supports slot 1 since it is
the bridge with the lowest device number on Bus 1. All the bridges in the expansion chassis are
initialized with the same chassis number. Device numbers for the slots behind the Bridge C are
assigned sequentially starting with device number 1, even though the slot numbers continue in
sequence after the slots for the previous bus segment.

Revision 1.1

144

� � �

� � �

6ORW�1XPEHUV

'HYLFH�1XPEHUV

� � �

� � �

%XV��

%XV��

�

�

(PEHGGHG

3&,�'HYLFH

�

%XV��

3&,�%ULGJH

�%�

&KDVVLV����

)LUVW��<HV

��6ORWV���

3&,�%ULGJH

�&�

&KDVVLV����

)LUVW��1R

��6ORWV���

([SDQVLRQ�&KDVVLV

6RXUFH

3&,�%ULGJH

&KDVVLV����

)LUVW��1R

��6ORWV���

%XV��

%XV��

3&,�%ULGJH��'�

VORW�UHJLVWHUV

QRW

LPSOHPHQWHG

([SDQVLRQ

&DUG

'HYLFH

([SDQVLRQ

&DUG

'HYLFH

�

�

� � �

� � �

� � �

� �

�

%XV��

�

�

%XV��

3&,�%ULGJH

�(�

&KDVVLV����

)LUVW��<HV

��6ORWV���

3&,�%ULGJH��)�

&KDVVLV����

)LUVW��1R

��6ORWV���

([SDQVLRQ�&KDVVLV

%XV��

3&,�%ULGJH��*�

VORW�UHJLVWHUV

QRW

LPSOHPHQWHG

([SDQVLRQ

&DUG

'HYLFH

([SDQVLRQ

&DUG

'HYLFH

�

�

Figure 13-5: Example PCI Expansion Chassis With Peer Bridges

Figure 13-5 illustrates another arrangement for bridges to expansion chassis. Figure 13-5 shows
multiple bridges in a single expansion chassis connected as peers on the bus to the main chassis.
In this example the embedded device on Bus 1 is in the main chassis and reports the same slot
number as the source PCI bridge. (The slot numbering algorithm does not allow for a device
other than a bridge on Bus 1 to report a location anywhere other than the location of the source
PCI bridge.)

In Figure 13-5, Bridge B is the bridge with the lowest device number on Bus 1, so it is the first
bridge discovered by the algorithm in Chassis #1. Its First in Chassis bit is set and it supports
slot 1. Bridge C has the next higher device number, so its slot numbers follow those of Bridge B.
Bridge E begins Chassis #2, which in this example is identical to Chassis #1.

Revision 1.1

145

13.6. Run-Time Algorithm for Determining Chassis and Slot Number

The algorithm for determining the chassis and slot number of a device is shown in Figure 13-6.
It starts by checking the IRQ Routing Table for information about how the main chassis is
connected. If the device in question is plugged directly into a main-chassis slot, the slot number
can be read directly from the IRQ Routing Table using PCI BIOS routines.

If the device in question is not plugged directly into a main-chassis slot, the algorithm must scan
the PCI bus hierarchy to locate the device. For systems with multiple host bridges the algorithm
uses the IRQ Routing Table to determine which host bridge sources the branch of the hierarchy
supporting the bus for the device in question. The algorithm searches the PCI bus hierarchy in a
predefined order, starting from the appropriate host bridge. If the algorithm finds the bus and
device without ever encountering a bridge with the First in Chassis bit set, the device is located
in the main chassis, and its slot number is deduced from the IRQ Routine Table.

If the algorithm finds a bridge with the First in Chassis bit set, it has found a new expansion
chassis. Whenever the algorithm finds a new chassis, it picks up the chassis number from the
Chassis Number register and starts counting expansion slots. The algorithm proceeds through
the bus hierarchy counting slots based on the device number and the Slots Provided register in
each bridge that it finds along the way. Note that even though the algorithm only reads the
Chassis Number register from the bridge with the First in Chassis bit set, system initialization
software is required to initialize all Chassis Number registers in the same chassis to the same
value.

Revision 1.1

146

)LQGLQJ�D�EXV�GHYLFH�IXQFWLRQ
V�FKDVVLV�VORW�QXPEHU

'HILQLWLRQV�

3,57� �3&,�,54�5RXWLQJ�7DEOH
)%&� �)LUVW�%ULGJH�LQ�&KDVVLV��ELW�LQ�EULGJH�
EULGJH�OHDGLQJ�WR�EXV� �EULGJH�ZKHUH�6HFRQGDU\�%XV�%XPEHU�� �EXV�DQG
6XERUGLQDWH�%XV�1XPEHU�! �EXV
GRQH� �6/27�DQG�&+$66,6�KDYH�WKH�GHVLUHG�UHVXOWV

7HPSRUDU\�9DULDEOHV�

1806/276� �LQWHUPHGLDWH�VWRUDJH
'(9,&(� �LQWHUPHGLDWH�VWRUDJH�RI�D�GHYLFH�IXQFWLRQ�QXPEHU
%86� �EXV�QXPEHU�FXUUHQWO\�EHLQJ�VHDUFKHG
33%� �EXV�GHYLFH�IXQFWLRQ�QXPEHU�RI�3&,�WR�3&,��3�3��EULGJH�EHLQJ�H[DPLQHG

,QSXWV�

7%86� �%XV�QXPEHU�RI�WDUJHW�GHYLFH
7'(9,&(� �'HYLFH�QXPEHU�RI�WDUJHW�GHYLFH

2XWSXWV�

&+$66,6� �&KDVVLV�QXPEHU�UHVXOW���� �0DLQ�
6/27� �6ORW�QXPEHU�UHVXOW���� �(PEHGGHG�

0DLQ�URXWLQH

&+$66,6� ��

���&KHFN�IRU�DQ�HQWU\�LQ�WKH�3&,�,54�5RXWLQJ�7DEOH
LI�WDUJHW�LV�LQ�3,57

^
6/27� �VORW�QXPEHU�IURP�3,57
GRQH
`

���6WDUW�VHDUFKLQJ�IRU�WKH�WDUJHW
6HW�%86�WR�KLJKHVW�EXV�LQ�3,57�OHVV�WKDQ�7%86

)LQG�WKH�3�3�EULGJH�RQ�%86�OHDGLQJ�WR�7%86
33%� �3�3�EULGJH�OHDGLQJ�WR�7%86

6/27� �6ORW�QXPEHU�RI�33%��IURP�3,57�

6HW�%86�WR�6HFRQGDU\�EXV�QXPEHU�IURP�33%

/DEHO�6&$1&+$66,6

Revision 1.1

147

1806/276� �1XPEHU�RI�H[SDQVLRQ�VORWV�IURP�33%��PD\�EH�]HUR�

���&KHFN�IRU�WKH�EHJLQQLQJ�RI�D�QHZ�FKDVVLV
���LI�33%�LV�)%&

^
&+$66,6� �&KDVVLV�QXPEHU�IURP�33%
6/27� ��
`

IRU�'(9,&(� �GHYLFH���WR�GHYLFH����DQG�DOO�IXQFWLRQV
^
���,QFUHPHQW�WKH�VORW�QXPEHU�RQO\�IRU�GHYLFH�QXPEHUV�WKDW�FRUUHVSRQG�WR
����VORWV
LI�'(9,&(�!���DQG�'(9,&(�� �1806/276

6/27� �6/27����

���&KHFN�IRU�D�PDWFK
LI�%86�PDWFKHV�7%86�DQG�'(9,&(�PDWFKHV�7'(9,&(

^
���(PEHGGHG�GHYLFHV�PXVW�EH�DIWHU�VORWV�LI�WKH\�DUHQ
W�GLUHFWO\
���EHKLQG�WKH�ILUVW�EULGJH�LQ�D�FKDVVLV
LI�1806/276�!���DQG�'(9,&(�!�1806/276

6/27� ��
LI�'(9,&(�LV�EULGJH�DQG�'(9,&(�LV�)%&

^
&+$66,6� �&KDVVLV�QXPEHU�IURP�'(9,&(
6/27� ��
`

GRQH
`

���&KHFN�IRU�D�EULGJH�WKDW�PXVW�EH�WUDYHUVHG
LI�'(9,&(�LV�EULGJH�OHDGLQJ�WR�7%86

^
33%� �'(9,&(

6HW�%86�WR�6HFRQGDU\�EXV�QXPEHU�IURP�33%

JRWR�6&$1&+$66,6�
`

���&KHFN�IRU�D�EULGJH�WKDW�KDV�VORWV�ZKLFK�PXVW�EH�FRXQWHG��L�H��D
���������EULGJH�ZLWK�VORWV�EHKLQG�LW�EXW�7%86�LV�EHKLQG�DQRWKHU�EULGJH

���1RWH�WKDW�EULGJHV�LQ�VORWV�DUH�QRW�LQFOXGHG�LQ�WKLV
LI�'(9,&(�!�1806/276�DQG�'(9,&(�LV�EULGJH

^
���&KHFN�IRU�D�EULGJH�ZKLFK�VLJQDOV�WKH�VWDUW�RI�D�QHZ�FKDVVLV
LI�'(9,&(�LV�)%&

^
&+$66,6� �&KDVVLV�QXPEHU�IURP�'(9,&(
6/27� ��
`

6/27� �6/27���1XPEHU�RI�H[SDQVLRQ�VORWV�IURP�'(9,&(
`

`

Figure 13-6: Example Algorithm for Converting Bus/Device Number to Chassis/Slot Number

Revision 1.1

148

	Return to Contents

